Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
11 result(s) for "Moudry, Pavel"
Sort by:
High speed of fork progression induces DNA replication stress and genomic instability
Accurate replication of DNA requires stringent regulation to ensure genome integrity. In human cells, thousands of origins of replication are coordinately activated during S phase, and the velocity of replication forks is adjusted to fully replicate DNA in pace with the cell cycle 1 . Replication stress induces fork stalling and fuels genome instability 2 . The mechanistic basis of replication stress remains poorly understood despite its emerging role in promoting cancer 2 . Here we show that inhibition of poly(ADP-ribose) polymerase (PARP) increases the speed of fork elongation and does not cause fork stalling, which is in contrast to the accepted model in which inhibitors of PARP induce fork stalling and collapse 3 . Aberrant acceleration of fork progression by 40% above the normal velocity leads to DNA damage. Depletion of the treslin or MTBP proteins, which are involved in origin firing, also increases fork speed above the tolerated threshold, and induces the DNA damage response pathway. Mechanistically, we show that poly(ADP-ribosyl)ation (PARylation) and the PCNA interactor p21 Cip1 (p21) are crucial modulators of fork progression. PARylation and p21 act as suppressors of fork speed in a coordinated regulatory network that is orchestrated by the PARP1 and p53 proteins. Moreover, at the fork level, PARylation acts as a sensor of replication stress. During PARP inhibition, DNA lesions that induce fork arrest and are normally resolved or repaired remain unrecognized by the replication machinery. Conceptually, our results show that accelerated replication fork progression represents a general mechanism that triggers replication stress and the DNA damage response. Our findings contribute to a better understanding of the mechanism of fork speed control, with implications for genomic (in)stability and rational cancer treatment. Inhibition of PARP is shown to accelerate the speed of replication fork elongation, which prevents fork stalling and induces DNA damage, with implications for genomic instability and cancer treatment.
DNA polymerase α-primase facilitates PARP inhibitor-induced fork acceleration and protects BRCA1-deficient cells against ssDNA gaps
PARP inhibitors (PARPi), known for their ability to induce replication gaps and accelerate replication forks, have become potent agents in anticancer therapy. However, the molecular mechanism underlying PARPi-induced fork acceleration has remained elusive. Here, we show that the first PARPi-induced effect on DNA replication is an increased replication fork rate, followed by a secondary reduction in origin activity. Through the systematic knockdown of human DNA polymerases, we identify POLA1 as mediator of PARPi-induced fork acceleration. This acceleration depends on both DNA polymerase α and primase activities. Additionally, the depletion of POLA1 increases the accumulation of replication gaps induced by PARP inhibition, sensitizing cells to PARPi. BRCA1-depleted cells are especially susceptible to the formation of replication gaps under POLA1 inhibition. Accordingly, BRCA1 deficiency sensitizes cells to POLA1 inhibition. Thus, our findings establish the POLA complex as important player in PARPi-induced fork acceleration and provide evidence that lagging strand synthesis represents a targetable vulnerability in BRCA1-deficient cells. PARP inhibitors are effective anticancer agents that induce replication gaps and accelerate replication forks. Here, the authors reveal that DNA polymerase α / primase complex is a mediator of PARP inhibitor-induced replication fork acceleration particularly BRCA1-deficient cells.
A drug repurposing strategy for overcoming human multiple myeloma resistance to standard-of-care treatment
Despite several approved therapeutic modalities, multiple myeloma (MM) remains an incurable blood malignancy and only a small fraction of patients achieves prolonged disease control. The common anti-MM treatment targets proteasome with specific inhibitors (PI). The resulting interference with protein degradation is particularly toxic to MM cells as they typically accumulate large amounts of toxic proteins. However, MM cells often acquire resistance to PIs through aberrant expression or mutations of proteasome subunits such as PSMB5, resulting in disease recurrence and further treatment failure. Here we propose CuET—a proteasome-like inhibitor agent that is spontaneously formed in-vivo and in-vitro from the approved alcohol-abuse drug disulfiram (DSF), as a readily available treatment effective against diverse resistant forms of MM. We show that CuET efficiently kills also resistant MM cells adapted to proliferate under exposure to common anti-myeloma drugs such as bortezomib and carfilzomib used as the first-line therapy, as well as to other experimental drugs targeting protein degradation upstream of the proteasome. Furthermore, CuET can overcome also the adaptation mechanism based on reduced proteasome load, another clinically relevant form of treatment resistance. Data obtained from experimental treatment-resistant cellular models of human MM are further corroborated using rather unique advanced cytotoxicity experiments on myeloma and normal blood cells obtained from fresh patient biopsies including newly diagnosed as well as relapsed and treatment-resistant MM. Overall our findings suggest that disulfiram repurposing particularly if combined with copper supplementation may offer a promising and readily available treatment option for patients suffering from relapsed and/or therapy-resistant multiple myeloma.
The need for speed: drivers and consequences of accelerated replication forks
The modulation of DNA replication dynamics has emerged as a key area of study in understanding genome stability and its perturbations in various physiological and pathological contexts. Replication fork rate is influenced by a variety of factors, including DNA repair pathways, origin firing, chromatin organization, transcription, and oncogenic signaling. This review highlights recent findings on the molecular mechanisms driving replication fork acceleration, focusing on scenarios such as PARP inhibition, oncogene activation, depletion of replication factors, and defects in Okazaki fragment processing. We discuss how reduced origin firing, R-loop resolution, and metabolic changes contribute to fork rate modulation, as well as the involvement of innate immune signaling, particularly through pathways such as cGAS-STING and ISG15. Special attention is given to consequences of accelerated replication forks for genome stability and their role in disease progression, particularly cancer. By unraveling the molecular mechanisms of fork acceleration, this Mini Review underscores its critical role in shaping genome integrity and cellular homeostasis, providing insights into future research directions and therapeutic strategies. A mini review explores molecular drivers of replication fork acceleration and their consequences for genome stability, innate immunity, and cancer.
Alcohol-abuse drug disulfiram targets cancer via p97 segregase adaptor NPL4
Cancer incidence is rising and this global challenge is further exacerbated by tumour resistance to available medicines. A promising approach to meet the need for improved cancer treatment is drug repurposing. Here we highlight the potential for repurposing disulfiram (also known by the trade name Antabuse), an old alcohol-aversion drug that has been shown to be effective against diverse cancer types in preclinical studies. Our nationwide epidemiological study reveals that patients who continuously used disulfiram have a lower risk of death from cancer compared to those who stopped using the drug at their diagnosis. Moreover, we identify the ditiocarb–copper complex as the metabolite of disulfiram that is responsible for its anti-cancer effects, and provide methods to detect preferential accumulation of the complex in tumours and candidate biomarkers to analyse its effect on cells and tissues. Finally, our functional and biophysical analyses reveal the molecular target of disulfiram’s tumour-suppressing effects as NPL4, an adaptor of p97 (also known as VCP) segregase, which is essential for the turnover of proteins involved in multiple regulatory and stress-response pathways in cells. Disulfiram is metabolized into copper–diethyldithiocarbamate, which binds to NPL4 and induces its aggregation in cells, leading to blockade of the p97–NPL4–UFD1 pathway and induction of a complex cellular phenotype that results in cell death. Drug repurposing against cancer Disulfiram (trade names Antabuse and Antabus) has been used to treat alcohol dependence for several decades. Jiri Bartek and colleagues report epidemiological data from Danish nationwide registries showing that individuals who continued to take disulfiram after a cancer diagnosis had lower cancer-related mortality than individuals who stopped taking the drug. The authors show that disulfiram has anti-cancer effects in vitro and in vivo and identify the NPL4 protein as a drug target. NPL4 is involved in protein turnover, including stress-response pathways that promote tumorigenesis. These findings suggest that re-purposing disulfiram as an anti-cancer drug is a potential future therapeutic strategy.
Emetine blocks DNA replication via proteosynthesis inhibition not by targeting Okazaki fragments
DNA synthesis of the leading and lagging strands works independently and cells tolerate single-stranded DNA generated during strand uncoupling if it is protected by RPA molecules. Natural alkaloid emetine is used as a specific inhibitor of lagging strand synthesis, uncoupling leading and lagging strand replication. Here, by analysis of lagging strand synthesis inhibitors, we show that despite emetine completely inhibiting DNA replication: it does not induce the generation of single-stranded DNA and chromatin-bound RPA32 (CB-RPA32). In line with this, emetine does not activate the replication checkpoint nor DNA damage response. Emetine is also an inhibitor of proteosynthesis and ongoing proteosynthesis is essential for the accurate replication of DNA. Mechanistically, we demonstrate that the acute block of proteosynthesis by emetine temporally precedes its effects on DNA replication. Thus, our results are consistent with the hypothesis that emetine affects DNA replication by proteosynthesis inhibition. Emetine and mild POLA1 inhibition prevent S-phase poly(ADP-ribosyl)ation. Collectively, our study reveals that emetine is not a specific lagging strand synthesis inhibitor with implications for its use in molecular biology.
Bacterial intoxication evokes cellular senescence with persistent DNA damage and cytokine signalling
Cytolethal distending toxins (CDTs) are proteins produced and secreted by facultative pathogenic strains of Gram‐negative bacteria with potentially genotoxic effects. Mammalian cells exposed to CDTs undergo cell type‐dependent cell‐cycle arrest or apoptosis; however, the cell fate responses to such intoxication are mechanistically incompletely understood. Here we show that both normal and cancer cells (BJ, IMR‐90 and WI‐38 fibroblasts, HeLa and U2‐OS cell lines) that survive the acute phase of intoxication by Haemophilus ducreyi CDT possess the hallmarks of cellular senescence. This characteristic phenotype included persistently activated DNA damage signalling (detected as 53BP1/γH2AX+ foci), enhanced senescence‐associated β‐galactosidase activity, expansion of promyelocytic leukaemia nuclear compartments and induced expression of several cytokines (especially interleukins IL‐6, IL‐8 and IL‐24), overall features shared by cells undergoing replicative or premature cellular senescence. We conclude that analogous to oncogenic, oxidative and replicative stresses, bacterial intoxication represents another pathophysiological stimulus that induces premature senescence, an intrinsic cellular response that may mechanistically underlie the ‘distended’ morphology evoked by CDTs. Finally, the activation of the two anticancer barriers, apoptosis and cellular senescence, together with evidence of chromosomal aberrations (micronucleation) reported here, support the emerging genotoxic and potentially oncogenic effects of this group of bacterial toxins, and warrant further investigation of their role(s) in human disease.
Alcohol-abuse drug disulfiram targets cancer via p97 segregase adapter NPL4
Cancer incidence is rising and this global challenge is further exacerbated by tumour resistance to available medicines. A promising approach to such unmet need for improved cancer treatment is drug repurposing. Here we highlight the potential for repurposing disulfiram (Antabuse), an old alcohol-aversion drug effective against diverse cancer types in preclinical studies. Our nationwide epidemiological study reveals that patients who continuously used disulfiram have a lower risk of death from cancer compared to those who stopped using the drug at their diagnosis. Moreover, we identify ditiocarb-copper complex as the metabolite of disulfiram responsible for anticancer effects, and provide methods to detect its preferential accumulation in tumours and candidate biomarkers for impact in cells and tissues. Finally, our functional and biophysical analyses reveal the long-sought molecular target of disulfiram’s tumour suppressing effects as NPL4, an adapter of p97/VCP segregase essential for protein turnover involved in multiple regulatory and stress-response cellular pathways.
Quantitative AI-based DNA fiber workflow to study replication stress
Replication stress (RS) is a prominent source of genome instability and human diseases. Understanding its molecular mechanism through various quantitative and unbiased methodologies is essential for the advancement of treatment strategies. One of the powerful methods to study DNA replication dynamics and its alterations at the single-molecule resolution is the DNA fiber assay. However, this method relies exclusively on manual image acquisition and analysis, making it time-consuming and susceptible to user bias. Here, we present a quantitative AI-based DNA fiber (qAID) workflow enabling imaging and multiparameter analysis of thousands of DNA fibers within several dozen minutes. Our workflow quantifies key parameters, including DNA fiber frequency, length, and symmetry, while also allowing visual inspection of individual DNA fibers using unbiased image galleries. The robustness of the workflow is demonstrated by comprehensive datasets of biologically relevant experiments performed by three independent laboratories. Overall, qAID workflow provides a fast and effective examination of replication dynamics and its alterations at the single-molecule resolution.
Environmental Life Cycle Assessment of Silage Maize in Relation to Regenerative Agriculture
The demand for agricultural products is growing and is resulting in significant environmental impacts due to the overuse of fertilizers (and pesticides in some cases). There is a continued need to find sustainable methods in agricultural systems without harming the environment. Regenerative agriculture can be considered as one of the best methods of sustainable agriculture. The aim of this comparative life cycle assessment (LCA) study was to quantify the environmental impacts associated with the production of silage maize at different doses of fertilizers and pesticides under conventional agriculture and without the use of fertilizers and pesticides under regenerative agriculture. The input data were obtained from the experimental fields and supplemented by background process databases of Ecoinvent, World Food Live Cycle Assessment Database (WFLCD), and the French database AGRIBALYSE. The results of the study were related to six midpoint impact categories: global warming, marine eutrophication, freshwater eutrophication, freshwater ecotoxicity, marine ecotoxicity, and terrestrial ecotoxicity. Although the variant of growing silage maize without the use of fertilizers and pesticides according to the principle of regenerative agriculture showed the lowest burden on the environment, the yields of the cultivated silage maize were 43–55% lower than those of the fertilized variants.