Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
15 result(s) for "Mukerjee, Shaibal"
Sort by:
Associations of Air Pollution and Pediatric Asthma in Cleveland, Ohio
Air pollution has been associated with poor health outcomes and continues to be a risk factor for respiratory health in children. While higher particulate matter (PM) levels are associated with increased frequency of symptoms, lower lung function, and increase airway inflammation from asthma, the precise composition of the particles that are more highly associated with poor health outcomes or healthcare utilization are not fully elucidated. PM is measured quantifiably by current air pollution monitoring systems. To better determine sources of PM and speciation of such sources, a particulate matter (PM) source apportionment study, the Cleveland Multiple Air Pollutant Study (CMAPS), was conducted in Cleveland, Ohio, in 2009–2010, which allowed more refined assessment of associations with health outcomes. This article presents an evaluation of short-term (daily) and long-term associations between motor vehicle and industrial air pollution components and pediatric asthma emergency department (ED) visits by evaluating two sets of air quality data with healthcare utilization for pediatric asthma. Exposure estimates were developed using land use regression models for long-term exposures for nitrogen dioxide (NO2) and coarse (i.e., with aerodynamic diameters between 2.5 and 10 μm) particulate matter (PM) and the US EPA Positive Matrix Factorization receptor model for short-term exposures to fine (<2.5 μm) and coarse PM components. Exposure metrics from these two approaches were used in asthma ED visit prevalence and time series analyses to investigate seasonal-averaged short- and long-term impacts of both motor vehicles and industry emissions. Increased pediatric asthma ED visits were found for LUR coarse PM and NO2 estimates, which were primarily contributed by motor vehicles. Consistent, statistically significant associations with pediatric asthma visits were observed, with short-term exposures to components of fine and coarse iron PM associated with steel production. Our study is the first to combine spatial and time series analysis of ED visits for asthma using the same periods and shows that PM related to motor vehicle emissions and iron/steel production are associated with increased pediatric asthma visits.
Evaluation of Land Use Regression Models for Nitrogen Dioxide and Benzene in Four US Cities
Spatial analysis studies have included the application of land use regression models (LURs) for health and air quality assessments. Recent LUR studies have collected nitrogen dioxide (NO2) and volatile organic compounds (VOCs) using passive samplers at urban air monitoring networks in El Paso and Dallas, TX, Detroit, MI, and Cleveland, OH to assess spatial variability and source influences. LURs were successfully developed to estimate pollutant concentrations throughout the study areas. Comparisons of development and predictive capabilities of LURs from these four cities are presented to address this issue of uniform application of LURs across study areas. Traffic and other urban variables were important predictors in the LURs although city-specific influences (such as border crossings) were also important. In addition, transferability of variables or LURs from one city to another may be problematic due to intercity differences and data availability or comparability. Thus, developing common predictors in future LURs may be difficult.
Gaseous Oxidized Mercury Dry Deposition Measurements in the Southwestern USA: A Comparison between Texas, Eastern Oklahoma, and the Four Corners Area
Gaseous oxidized mercury (GOM) dry deposition measurements using aerodynamic surrogate surface passive samplers were collected in central and eastern Texas and eastern Oklahoma, from September 2011 to September 2012. The purpose of this study was to provide an initial characterization of the magnitude and spatial extent of ambient GOM dry deposition in central and eastern Texas for a 12-month period which contained statistically average annual results for precipitation totals, temperature, and wind speed. The research objective was to investigate GOM dry deposition in areas of Texas impacted by emissions from coal-fired utility boilers and compare it with GOM dry deposition measurements previously observed in eastern Oklahoma and the Four Corners area. Annual GOM dry deposition rate estimates were relatively low in Texas, ranging from 0.1 to 0.3 ng/m2h at the four Texas monitoring sites, similar to the 0.2 ng/m2h annual GOM dry deposition rate estimate recorded at the eastern Oklahoma monitoring site. The Texas and eastern Oklahoma annual GOM dry deposition rate estimates were at least four times lower than the highest annual GOM dry deposition rate estimate previously measured in the more arid bordering western states of New Mexico and Colorado in the Four Corners area.
Spatial Analysis of Volatile Organic Compounds from a Community-Based Air Toxics Monitoring Network in Deer Park, Texas, USA
In the summer of 2003, ambient air concentrations of volatile organic compounds (VOCs) were measured at 12 sites within a 3-km radius in Deer Park, Texas near Houston. The purpose of the study was to assess local spatial influence of traffic and other urban sources and was part of a larger investigation of VOC spatial and temporal heterogeneity influences in selected areas of Houston. Seventy 2-h samples were collected using passive organic vapor monitors. Most measurements of 13 VOC species were greater than the method detection limits. Samplers were located at 10 residential sites, a regulatory air monitoring station, and a site located at the centroid of the census tract in which the regulatory station was located. For residential sites, sampler placement locations (e. g., covered porch vs. house eaves) had no effect on concentration with the exception of methyl tertiary-butyl ether (MTBE). Relatively high correlations (Pearson r > 0.8) were found between toluene, ethylbenzene, and o,m,p-xylenes suggesting petroleum-related influence. Chloroform was not correlated with these species or benzene (Pearson r < 0.35) suggesting a different source influence, possibly from process-related activities. As shown in other spatial studies, wind direction relative to source location had an effect on VOC concentrations.
Rubbertown Next Generation Emissions Measurement Demonstration Project
Industrial facilities and other sources can emit air pollutants from fugitive leaks, process malfunctions and area sources that can be difficult to understand and to manage. Next generation emissions measurement (NGEM) approaches executed near facilities are enabling new ways to assess these sources and their impacts to nearby populations. This paper describes complementary uses of emerging NGEM systems in a Louisville, KY industrial district (Rubbertown), focusing on an important area air toxic, 1,3-butadiene. Over a one-year deployment starting in September 2017, two-week average passive samplers (PSs) at 11 sites showed both geospatial and temporal trends. At 0.24 ppbv annual average 1,3-butadiene concentration, a group of PSs located near facility fence lines was elevated compared to a PS group located in the community and upwind from facilities (0.07 ppbv average). Two elevated PS periods capturing emission events were examined using time-resolved NGEM approaches as case studies. In one event a 1.18 ppbv PS reading was found to be relatively localized and was caused by a multiday emission from a yet to be identified, non-facility source. In the other event, the airshed was more broadly impacted with PS concentrations ranging from 0.71 ppbv for the near-facility group to 0.46 ppbv for the community group. This case was likely influenced by a known emission event at an industrial facility. For both case studies, air pollutant and wind data from prototype NGEM systems were combined with source location models to inform the emission events. This research illustrates the power of applying NGEM approaches to improve both the understanding of emissions near sources and knowledge of impacts to near-source communities.
Association of Roadway Proximity with Fasting Plasma Glucose and Metabolic Risk Factors for Cardiovascular Disease in a Cross-Sectional Study of Cardiac Catheterization Patients
The relationship between traffic-related air pollution (TRAP) and risk factors for cardiovascular disease needs to be better understood in order to address the adverse impact of air pollution on human health. We examined associations between roadway proximity and traffic exposure zones, as markers of TRAP exposure, and metabolic biomarkers for cardiovascular disease risk in a cohort of patients undergoing cardiac catheterization. We performed a cross-sectional study of 2,124 individuals residing in North Carolina (USA). Roadway proximity was assessed via distance to primary and secondary roadways, and we used residence in traffic exposure zones (TEZs) as a proxy for TRAP. Two categories of metabolic outcomes were studied: measures associated with glucose control, and measures associated with lipid metabolism. Statistical models were adjusted for race, sex, smoking, body mass index, and socioeconomic status (SES). An interquartile-range (990 m) decrease in distance to roadways was associated with higher fasting plasma glucose (β = 2.17 mg/dL; 95% CI: -0.24, 4.59), and the association appeared to be limited to women (β = 5.16 mg/dL; 95% CI: 1.48, 8.84 compared with β = 0.14 mg/dL; 95% CI: -3.04, 3.33 in men). Residence in TEZ 5 (high-speed traffic) and TEZ 6 (stop-and-go traffic), the two traffic zones assumed to have the highest levels of TRAP, was positively associated with high-density lipoprotein cholesterol (HDL-C; β = 8.36; 95% CI: -0.15, 16.9 and β = 5.98; 95% CI: -3.96, 15.9, for TEZ 5 and 6, respectively). Proxy measures of TRAP exposure were associated with intermediate metabolic traits associated with cardiovascular disease, including fasting plasma glucose and possibly HDL-C.
Communication Strategy of Transboundary Air Pollution Findings in a US–Mexico Border XXI Program Project
From 1996 to 1997, the US Environmental Protection Agency (EPA) and the Texas Natural Resource Conservation Commission (TNRCC) conducted an air quality study known as the Lower Rio Grande Valley Transboundary Air Pollution Project (TAPP). The study was a US–Mexico Border XXI program project and was developed in response to local community requests on a need for more air quality measurements and concerns about the health impact of local air pollutants; this included concerns about emissions from border-dependent industries in Mexico, known as maquiladoras. The TAPP was a follow-up study to environmental monitoring done by EPA in this area in 1993 and incorporated scientific and community participation in development, review of results, and public presentation of findings. In spite of this, critical remarks were leveled by community activists against the study's preliminary “good news” findings regarding local air quality and the influence of transboundary air pollution. To resolve these criticisms and to refine the findings to address these concerns, analyses included comparisons of daily and near real-time measurements to TNRCC effects screening levels and data from other studies along with wind sector analyses. Reassessment of the data suggested that although regional source emissions occurred and outliers of elevated pollutant levels were found, movement of air pollution across the border did not appear to cause noticeable deterioration of air quality. In spite of limitations stated to the community, the TAPP was presented as establishing a benchmark to assess current and future transboundary air quality in the Valley. The study has application in Border XXI Program or other air quality studies where transboundary transport is a concern since it involved interagency coordination, public involvement, and communication of scientifically sound results for local environmental protection efforts.
Field Method Comparison between Passive Air Samplers and Continuous Monitors for VOCs and NO2 in El Paso, Texas
This study evaluates the performance of Model 3300 Ogawa Passive Nitrogen Dioxide (NO 2 ) Samplers and 3M 3520 Organic Vapor Monitors (OVMs) by comparing integrated passive sampling concentrations to averaged hourly NO 2 and volatile organic compound (VOC) measurements at two sites in El Paso, TX. Sampling periods were three time intervals (3-day weekend, 4-day weekday, and 7-day weekly) for three consecutive weeks. OVM concentrations were corrected for ambient pressure to account for higher elevation. Precise results (<5% relative standard deviation, RSD) were found for NO 2 measurements from collocated Ogawa samplers. Reproducibility was lower from duplicate OVMs for BTEX (benzene, toluene, ethylbenzene, and xylene isomers) VOCs (≥7% RSD for 2-day samples) with better precision for longer sampling periods. Comparison of Ogawa NO 2 samplers with chemiluminescence measurements averaged over the same time period suggested potential calibration problems with the chemiluminescence analyzer. For BTEX species, generally good agreement was obtained between OVMs and automated-gas chromatograph (auto-GC) measurements. The OVMs successfully tracked increasing levels of VOCs recorded by the auto-GCs.
Field Method Comparison between Passive Air Samplers and Continuous Monitors for VOCs and NO^sub 2^ in El Paso, Texas
This study evaluates the performance of Model 3300 Ogawa Passive Nitrogen Dioxide (NO^sub 2^) Samplers and 3M 3520 Organic Vapor Monitors (OVMs) by comparing integrated passive sampling concentrations to averaged hourly NO^sub 2^ and volatile organic compound (VOC) measurements at two sites in El Paso, TX. Sampling periods were three time intervals (3-day weekend, 4-day weekday, and 7-day weekly) for three consecutive weeks. OVM concentrations were corrected for ambient pressure to account for higher elevation. Precise results (<5% relative standard deviation, RSD) were found for NO^sub 2^ measurements from collocated Ogawa samplers. Reproducibility was lower from duplicate OVMs for BTEX (benzene, toluene, ethylbenzene, and xylene isomers) VOCs (≥7% RSD for 2-day samples) with better precision for longer sampling periods. Comparison of Ogawa NO^sub 2^ samplers with chemiluminescence measurements averaged over the same time period suggested potential calibration problems with the chemiluminescence analyzer. For BTEX species, generally good agreement was obtained between OVMs and automated-gas chromatograph (auto-GC) measurements. The OVMs successfully tracked increasing levels of VOCs recorded by the auto-GCs. However, except for toluene, OVM BTEX measurements generally exceeded their continuous counterparts with a mean bias of 5-10%. Although interpretation of the study results was limited due to small sample sizes, diffusion barrier influences caused by shelters that housed OVMs and differences in sampling heights between OVMs and auto-GC inlet may explain the overestimation. [PUBLICATION ABSTRACT]