Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
97
result(s) for
"Myung, Kyungjae"
Sort by:
Revolution of Biotechnology with CRISPR
2025
Kwon et al. review innovative strategies developed to overcome these limitations, including signal amplification techniques, background noise reduction and improved genomic resolution. [...]Park et al. discuss potential adverse effects of CRISPR–Cas9-based genome labeling, citing reports that CRISPR–dCas9 binding to DNA can cause replication blockage, DNA–RNA hybrid triplex (R-loop) formation, subnuclear localization changes and unintended alterations in gene expression. Genetic requirements for the single-strand annealing pathway of double-strand break repair in Saccharomyces cerevisiae.
Journal Article
Regulation of PCNA cycling on replicating DNA by RFC and RFC-like complexes
2019
Replication-Factor-C (RFC) and RFC-like complexes (RLCs) mediate chromatin engagement of the proliferating cell nuclear antigen (PCNA). It remains controversial how RFC and RLCs cooperate to regulate PCNA loading and unloading. Here, we show the distinct PCNA loading or unloading activity of each clamp loader. ATAD5-RLC possesses the potent PCNA unloading activity. ATPase motif and collar domain of ATAD5 are crucial for the unloading activity. DNA structures did not affect PCNA unloading activity of ATAD5-RLC. ATAD5-RLC could unload ubiquitinated PCNA. Through single molecule measurements, we reveal that ATAD5-RLC unloaded PCNA through one intermediate state before ATP hydrolysis. RFC loaded PCNA through two intermediate states on DNA, separated by ATP hydrolysis. Replication proteins such as Fen1 could inhibit the PCNA unloading activity of Elg1-RLC, a yeast homolog of ATAD5-RLC in vitro. Our findings provide molecular insights into how PCNA is released from chromatin to finalize DNA replication/repair.
Replication-Factor-C (RFC) and RFC-like complexes (RLCs) mediate chromatin engagement of the proliferating cell nuclear antigen (PCNA). Here authors use biochemical and single molecule measurements to show that ATAD5-RLC has the most potent PCNA unloading activity and forms structurally distinct intermediates compared to RFC-PCNA.
Journal Article
Characterization of subcellular localization of eukaryotic clamp loader/unloader and its regulatory mechanism
by
Kim, Seong-jung
,
Park, Su Hyung
,
Lee, Kyoo-young
in
631/337/151/2353
,
631/80/386/1899
,
Animals
2021
Proliferating cell nuclear antigen (PCNA) plays a critical role as a processivity clamp for eukaryotic DNA polymerases and a binding platform for many DNA replication and repair proteins. The enzymatic activities of PCNA loading and unloading have been studied extensively in vitro. However, the subcellular locations of PCNA loaders, replication complex C (RFC) and CTF18-RFC-like-complex (RLC), and PCNA unloader ATAD5-RLC remain elusive, and the role of their subunits RFC2-5 is unknown. Here we used protein fractionation to determine the subcellular localization of RFC and RLCs and affinity purification to find molecular requirements for the newly defined location. All RFC/RLC proteins were detected in the nuclease-resistant pellet fraction. RFC1 and ATAD5 were not detected in the non-ionic detergent-soluble and nuclease-susceptible chromatin fractions, independent of cell cycle or exogenous DNA damage. We found that small RFC proteins contribute to maintaining protein levels of the RFC/RLCs. RFC1, ATAD5, and RFC4 co-immunoprecipitated with lamina-associated polypeptide 2 (LAP2) α which regulates intranuclear lamin A/C.
LAP2α
knockout consistently reduced detection of RFC/RLCs in the pellet fraction, while marginally affecting total protein levels. Our findings strongly suggest that PCNA-mediated DNA transaction occurs through regulatory machinery associated with nuclear structures, such as the nuclear matrix.
Journal Article
O-GlcNAc modification of leucyl-tRNA synthetase 1 integrates leucine and glucose availability to regulate mTORC1 and the metabolic fate of leucine
2022
All living organisms have the ability to sense nutrient levels to coordinate cellular metabolism. Despite the importance of nutrient-sensing pathways that detect the levels of amino acids and glucose, how the availability of these two types of nutrients is integrated is unclear. Here, we show that glucose availability regulates the central nutrient effector mTORC1 through intracellular leucine sensor leucyl-tRNA synthetase 1 (LARS1). Glucose starvation results in
O
-GlcNAcylation of LARS1 on residue S1042. This modification inhibits the interaction of LARS1 with RagD GTPase and reduces the affinity of LARS1 for leucine by promoting phosphorylation of its leucine-binding site by the autophagy-activating kinase ULK1, decreasing mTORC1 activity. The lack of LARS1
O
-GlcNAcylation constitutively activates mTORC1, supporting its ability to sense leucine, and deregulates protein synthesis and leucine catabolism under glucose starvation. This work demonstrates that LARS1 integrates leucine and glucose availability to regulate mTORC1 and the metabolic fate of leucine.
Leucyl-tRNA synthetase 1 (LARS1) is a leucine sensor for mTORC1 signaling and regulates leucine utilization depending on glucose availability. Here, the author show that
O
-GlcNAcylation of LARS1 is crucial for its ability to regulate mTORC1 activity and leucine metabolism upon glucose starvation.
Journal Article
Hidden route of protein damage through oxygen-confined photooxidation
2024
Oxidative modifications can disrupt protein folds and functions, and are strongly associated with human aging and diseases. Conventional oxidation pathways typically involve the free diffusion of reactive oxygen species (ROS), which primarily attack the protein surface. Yet, it remains unclear whether and how internal protein folds capable of trapping oxygen (O
2
) contribute to oxidative damage. Here, we report a hidden pathway of protein damage, which we refer to as O
2
-confined photooxidation. In this process, O
2
is captured in protein cavities and subsequently converted into multiple ROS, primarily mediated by tryptophan residues under blue light irradiation. The generated ROS then attack the protein interior through constrained diffusion, causing protein damage. The effects of this photooxidative reaction appear to be extensive, impacting a wide range of cellular proteins, as supported by whole-cell proteomic analysis. This photooxidative mechanism may represent a latent oxidation pathway in human tissues directly exposed to visible light, such as skin and eyes.
Conventional protein oxidation pathways typically involve free diffusion of reactive oxygen species (ROS), which primarily attack the protein surface. Here, the authors report a pathway of protein damage, O
2
-confined photooxidation, where O
2
is captured in protein cavities and subsequently converted into multiple ROS which attack the protein interior.
Journal Article
ATAD5-BAZ1B interaction modulates PCNA ubiquitination during DNA repair
2024
Mono-ubiquitinated PCNA (mono-Ub-PCNA) is generated when replication forks encounter obstacles, enabling the bypass of DNA lesions. After resolving stalled forks, Ub-PCNA must be de-ubiquitinated to resume high-fidelity DNA synthesis. ATAD5, in cooperation with the UAF1-USP1 complex, is responsible for this de-ubiquitination. However, the precise regulation of timely Ub-PCNA de-ubiquitination remains unclear. Our research reveals that BAZ1B, a regulatory subunit of the BAZ1B-SMARCA5 chromatin-remodeling complex (also known as the WICH complex), plays a crucial role in fine-tuning the de-ubiquitination process of Ub-PCNA. The BAZ1B binding region of ATAD5 encompasses the UAF1-binding domain of ATAD5. Disruption of the ATAD5-BAZ1B interaction results in premature de-ubiquitination of Ub-PCNA following treatment with hydrogen peroxide. Cells with impaired BAZ1B binding to ATAD5 display increased sensitivity to oxidative stress compared to wild-type cells. These findings suggest that BAZ1B prevents premature Ub-PCNA de-ubiquitination, thereby safeguarding genome integrity.
Regulation of PCNA ubiquitination is required for initiating lesion bypass and ensuring subsequent high-fidelity replication and ensure genome stability. Here, the authors reveal that BAZ1B inhibits ATAD5-UAF1-USP1, thereby preventing premature PCNA de-ubiquitination during lesion bypass under replicative stress.
Journal Article
A dual inhibitor of PIP5K1C and PIKfyve prevents SARS-CoV-2 entry into cells
2024
The SARS-CoV-2 pandemic has had an unprecedented impact on global public health and the economy. Although vaccines and antivirals have provided effective protection and treatment, the development of new small molecule-based antiviral candidates is imperative to improve clinical outcomes against SARS-CoV-2. In this study, we identified UNI418, a dual PIKfyve and PIP5K1C inhibitor, as a new chemical agent that inhibits SARS-CoV-2 entry into host cells. UNI418 inhibited the proteolytic activation of cathepsins, which is regulated by PIKfyve, resulting in the inhibition of cathepsin L-dependent proteolytic cleavage of the SARS-CoV-2 spike protein into its mature form, a critical step for viral endosomal escape. We also demonstrated that UNI418 prevented ACE2-mediated endocytosis of the virus via PIP5K1C inhibition. Our results identified PIKfyve and PIP5K1C as potential antiviral targets and UNI418 as a putative therapeutic compound against SARS-CoV-2.
UNI418: Novel antiviral agent targeting SARS-CoV-2 entry and endosomal escape
The COVID-19 pandemic, triggered by the SARS-CoV-2 virus, underscores the immediate need for effective treatments, particularly for severe cases. Even with vaccines, treatments that block the virus’s entry into cells are vital. SARS-CoV-2 enters host cells by attaching to the ACE2 receptor, a process that is a prime target for intervention. This research concentrates on blocking the virus’s entry into cells as a potential treatment method. The study is an experiment using cellular models to assess the effectiveness of a new compound, UNI418, in preventing SARS-CoV-2 infection. UNI418 targets enzymes involved in cell membrane dynamics, essential for the virus’s entry. The researchers conclude that UNI418, by blocking PIP5K1C and PIKfyve, offers a promising approach to preventing SARS-CoV-2 infection and emphasizes the importance of targeting the virus’s entry process as a treatment strategy. This summary was initially drafted using artificial intelligence, then revised and fact-checked by the author.
Journal Article
TRIP13 and APC15 drive mitotic exit by turnover of interphase- and unattached kinetochore-produced MCC
2018
The mitotic checkpoint ensures accurate chromosome segregation through assembly of the mitotic checkpoint complex (MCC), a soluble inhibitor of the anaphase-promoting complex/cyclosome (APC/C) produced by unattached kinetochores. MCC is also assembled during interphase by Mad1/Mad2 bound at nuclear pores, thereby preventing premature mitotic exit prior to kinetochore maturation and checkpoint activation. Using degron tagging to rapidly deplete the AAA+ ATPase TRIP13, we show that its catalytic activity is required to maintain a pool of open-state Mad2 for MCC assembly, thereby supporting mitotic checkpoint activation, but is also required for timely mitotic exit through catalytic disassembly of MCC. Strikingly, combining TRIP13 depletion with elimination of APC15-dependent Cdc20 ubiquitination/degradation results in a complete inability to exit mitosis, even when MCC assembly at unattached kinetochores is prevented. Thus, mitotic exit requires MCC produced either in interphase or mitosis to be disassembled by TRIP13-catalyzed removal of Mad2 or APC15-driven ubiquitination/degradation of its Cdc20 subunit.
The mitotic checkpoint complex (MCC) is assembled during both mitosis and interphase. Here, the authors use auxin-inducible degron tags to rapidly degrade TRIP13 and find that mitotic exit requires MCC disassembly by TRIP13-catalyzed removal of Mad2 or APC1-driven ubiquitination of Cdc20.
Journal Article
Thrap3 promotes R-loop resolution via interaction with methylated DDX5
2021
Transcription-replication conflicts lead to DNA damage and genomic instability, which are closely related to human diseases. A major source of these conflicts is the formation of R-loops, which consist of an RNA-DNA hybrid and a displaced single-stranded DNA. Although these structures have been studied, many aspects of R-loop biology and R-loop-mediated genome instability remain unclear. Here, we demonstrate that thyroid hormone receptor-associated protein 3 (Thrap3) plays a critical role in regulating R-loop resolution. In cancer cells, Thrap3 interacts with DEAD-box helicase 5 (DDX5) and localizes to R-loops. Arginine-mediated methylation of DDX5 is required for its interaction with Thrap3, and the Thrap3-DDX5 axis induces the recruitment of 5’-3’ exoribonuclease 2 (XRN2) into R-loops. Loss of Thrap3 increases R-loop accumulation and DNA damage. These findings suggest that Thrap3 mediates resistance to cell death by preventing R-loop accumulation in cancer cells.
Cancer: DNA damage associated with nucleic acid loops
A nuclear protein appears to inhibit cancer cell death by preventing the accumulation of nucleic acid structures called R-loops. R-loops are by-products of transcription, comprising two misaligned DNA strands and one RNA strand. They are involved in gene expression, but also threaten genome integrity and have been linked to the onset of neurodegeneration and cancers. A team led by Jang Hyun Choi and Hyug Moo Kwon, Ulsan National Institute of Science and Technology, South Korea, explored the role of Thrap3, a nuclear protein involved in RNA splicing, in R-loop-associated DNA damage. They found that Thrap3 binds to an enzyme essential for resolving R-loops. When the team suppressed Thrap3 expression, they saw an increase in R-loops in both normal and cancer cells. This R-loop accumulation significantly inhibited the growth of breast cancer cells.
Journal Article
ATAD5 promotes replication restart by regulating RAD51 and PCNA in response to replication stress
2019
Maintaining stability of replication forks is important for genomic integrity. However, it is not clear how replisome proteins contribute to fork stability under replication stress. Here, we report that ATAD5, a PCNA unloader, plays multiple functions at stalled forks including promoting its restart. ATAD5 depletion increases genomic instability upon hydroxyurea treatment in cultured cells and mice. ATAD5 recruits RAD51 to stalled forks in an ATR kinase-dependent manner by hydroxyurea-enhanced protein-protein interactions and timely removes PCNA from stalled forks for RAD51 recruitment. Consistent with the role of RAD51 in fork regression, ATAD5 depletion inhibits slowdown of fork progression and native 5-bromo-2ʹ-deoxyuridine signal induced by hydroxyurea. Single-molecule FRET showed that PCNA itself acts as a mechanical barrier to fork regression. Consequently, DNA breaks required for fork restart are reduced by ATAD5 depletion. Collectively, our results suggest an important role of ATAD5 in maintaining genome integrity during replication stress.
How the replisome machinery contributes to fork stability under replication stress is currently not clear. Here the authors reveal a role for ATAD5 in maintaining genome integrity during replication stress by promoting replication restart through RAD51/PCNA regulation.
Journal Article