Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
156 result(s) for "Nakashima, Tomoki"
Sort by:
Recent advances in osteoclast biology
The bone is an essential organ for locomotion and protection of the body, as well as hematopoiesis and mineral homeostasis. In order to exert these functions throughout life, bone tissue undergoes a repeating cycle of osteoclastic bone resorption and osteoblastic bone formation. The osteoclast is a large, multinucleated cell that is differentiated from monocyte/macrophage lineage cells by macrophage colony-stimulating factor (M-CSF) and receptor activator of nuclear factor-κB ligand (RANKL). RANKL transduces its signal through the signaling receptor, RANK. RANKL/RANK signaling activates NFATc1, the master regulator of osteoclastogenesis, to induce osteoclastogenic gene expression. Many types of cells express RANKL to support osteoclastogenesis depending on the biological context and the dysregulation of RANKL signaling leads to bone diseases such as osteoporosis and osteopetrosis. This review outlines the findings on osteoclast and RANKL/RANK signaling that have accumulated to date.
RANKL biology: bone metabolism, the immune system, and beyond
Receptor activator of NF-κB (RANK) ligand (RANKL) induces the differentiation of monocyte/macrophage-lineage cells into the bone-resorbing cells called osteoclasts. Because abnormalities in RANKL, its signaling receptor RANK, or decoy receptor osteoprotegerin (OPG) lead to bone diseases such as osteopetrosis, the RANKL/RANK/OPG system is essential for bone resorption. RANKL was first discovered as a T cell-derived activator of dendritic cells (DCs) and has many functions in the immune system, including organogenesis, cellular development. The essentiality of RANKL in the bone and the immune systems lies at the root of the field of \"osteoimmunology.\" Furthermore, this cytokine functions beyond the domains of bone metabolism and the immune system, e.g., mammary gland and hair follicle formation, body temperature regulation, muscle metabolism, and tumor development. In this review, we will summarize the current understanding of the functions of the RANKL/RANK/OPG system in biological processes.
IL-17-producing γδ T cells enhance bone regeneration
Immune responses are crucial not only for host defence against pathogens but also for tissue maintenance and repair after injury. Lymphocytes are involved in the healing process after tissue injury, including bone fracture and muscle damage. However, the specific immune cell subsets and mediators of healing are not entirely clear. Here we show that γδ T cells produce IL-17A, which promotes bone formation and facilitates bone fracture healing. Repair is impaired in IL-17A-deficient mice due to a defect in osteoblastic bone formation. IL-17A accelerates bone formation by stimulating the proliferation and osteoblastic differentiation of mesenchymal progenitor cells. This study identifies a novel role for IL-17-producing γδ T cells in skeletal tissue regeneration. γδ T cells are innate-like lymphocytes that regulate immune responses by producing IL-17A or IFN-γ, but have no known role in bone healing. Here the authors show a nonimmune bone-regenerative function of IL-17A produced by the Vγ6+ subset in mice.
Osteoprotection by semaphorin 3A
The bony skeleton is maintained by local factors that regulate bone-forming osteoblasts and bone-resorbing osteoclasts, in addition to hormonal activity. Osteoprotegerin protects bone by inhibiting osteoclastic bone resorption, but no factor has yet been identified as a local determinant of bone mass that regulates both osteoclasts and osteoblasts. Here we show that semaphorin 3A (Sema3A) exerts an osteoprotective effect by both suppressing osteoclastic bone resorption and increasing osteoblastic bone formation. The binding of Sema3A to neuropilin-1 (Nrp1) inhibited receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclast differentiation by inhibiting the immunoreceptor tyrosine-based activation motif (ITAM) and RhoA signalling pathways. In addition, Sema3A and Nrp1 binding stimulated osteoblast and inhibited adipocyte differentiation through the canonical Wnt/β-catenin signalling pathway. The osteopenic phenotype in Sema3a −/− mice was recapitulated by mice in which the Sema3A-binding site of Nrp1 had been genetically disrupted. Intravenous Sema3A administration in mice increased bone volume and expedited bone regeneration. Thus, Sema3A is a promising new therapeutic agent in bone and joint diseases. Semaphorin 3A (Sema3A) is shown to function as a protector of bone, by synchronously inhibiting osteoclastic bone resorption and promoting osteoblastic bone formation. Dual-action bone protection Drugs with the capacity to maintain and increase bone density are urgently needed in this ageing society. Here it is shown that semaphorin 3A (Sema3A), a signalling protein involved in the regulation of axonal growth, protects bone by suppressing osteoclastic bone resorption and increasing osteoblastic bone formation. The binding of Sema3A to its neuropilin-1 receptor inhibits osteoclast differentiation while stimulating osteoblast and inhibiting adipocyte differentiation. Intravenous Sema3A administration increases bone volume and expedites bone regeneration, making Sema3A a potentially promising therapeutic agent for bone and joint diseases.
The IL-33/ST2 axis is protective against acute inflammation during the course of periodontitis
Periodontitis, which is induced by repeated bacterial invasion and the ensuing immune reactions that follow, is the leading cause of tooth loss. Periodontal tissue is comprised of four different components, each with potential role in pathogenesis, however, most studies on immune responses focus on gingival tissue. Here, we present a modified ligature-induced periodontitis model in male mice to analyze the pathogenesis, which captures the complexity of periodontal tissue. We find that the inflammatory response in the peri-root tissues and the expression of IL-6 and RANKL by Thy-1.2 − fibroblasts/stromal cells are prominent throughout the bone destruction phase, and present already at an early stage. The initiation phase is characterized by high levels of ST2 (encoded by Il1rl1 ) expression in the peri-root tissue, suggesting that the IL-33/ST2 axis is involved in the pathogenesis. Both Il1rl1 - and Il33 -deficient mice exhibit exacerbated bone loss in the acute phase of periodontitis, along with macrophage polarization towards a classically activated phenotype and increased neutrophil infiltration, indicating a protective role of the IL-33/ST2 axis in acute inflammation. Thus, our findings highlight the hidden role of the peri-root tissue and simultaneously advance our understanding of the etiology of periodontitis via implicating the IL-33/ST2 axis. Current animal models of periodontitis are biased towards sample collection from gingival tissue, while other periodontal structures may play similarly important role in the initiation and maintenance of inflammation. Here authors present a model that enables a more comprehensive and longitudinal assessment of periodontal tissues, which points to a pivotal role for the peri-root tissues and an IL-33/ST2 axis in the pathogenesis.
Host defense against oral microbiota by bone-damaging T cells
The immune system evolved to efficiently eradicate invading bacteria and terminate inflammation through balancing inflammatory and regulatory T-cell responses. In autoimmune arthritis, pathogenic T H 17 cells induce bone destruction and autoimmune inflammation. However, whether a beneficial function of T-cell-induced bone damage exists is unclear. Here, we show that bone-damaging T cells have a critical function in the eradication of bacteria in a mouse model of periodontitis, which is the most common infectious disease. Bacterial invasion leads to the generation of specialized T H 17 cells that protect against bacteria by evoking mucosal immune responses as well as inducing bone damage, the latter of which also inhibits infection by removing the tooth. Thus, bone-damaging T cells, which may have developed to stop local infection by inducing tooth loss, function as a double-edged sword by protecting against pathogens while also inducing skeletal tissue degradation. IL-17-producing T cells are protective against infection, but the authors of this article previously showed that these cells also contribute to inflammatory bone destruction. Here they show in the context of periodontitis that microbiota-driven Th17-mediated bone destruction may actually be a physiological rather than a pathological process, as associated tooth loss prevents dissemination of oral bacteria.
RANKL expressed on synovial fibroblasts is primarily responsible for bone erosions during joint inflammation
ObjectiveRANKL is mainly expressed by synovial fibroblasts and T cells within the joints of rheumatoid arthritis patients. The relative importance of RANKL expression by these cell types for the formation of bone erosions is unclear. We therefore aimed to quantify the contribution of RANKL by each cell type to osteoclast differentiation and bone destruction during inflammatory arthritis.MethodsRANKL was specifically deleted in T cells (Tnfsf11flox/Δ Lck-Cre), in collagen VI expressing cells including synovial fibroblasts (Tnfsf11flox/Δ Col6a1-Cre) and in collagen II expressing cells including articular chondrocytes (Tnfsf11flox/Δ Col2a1-Cre). Erosive disease was induced using the collagen antibody-induced arthritis (CAIA) and collagen-induced arthritis (CIA) models. Osteoclasts and cartilage degradation were assessed by histology and bone erosions were assessed by micro-CT.ResultsThe inflammatory joint score during CAIA was equivalent in all mice regardless of cell-targeted deletion of RANKL. Significant increases in osteoclast numbers and bone erosions were observed in both the Tnfsf11flox/Δ and the Tnfsf11flox/Δ Lck-Cre groups during CAIA; however, the Tnfsf11flox/Δ Col6a1-Cre mice showed significant protection against osteoclast formation and bone erosions. Similar results on osteoclast formation and bone erosions were obtained in CIA mice. The deletion of RANKL on any cell type did not prevent articular cartilage loss in either model of arthritis used.ConclusionsThe expression of RANKL on synovial fibroblasts rather than T cells is predominantly responsible for the formation of osteoclasts and erosions during inflammatory arthritis. Synovial fibroblasts would be the best direct target in RANKL inhibition therapies.
The regulation of RANKL by mechanical force
Receptor activator of nuclear factor-κB ligand (RANKL) is a key mediator of osteoclast differentiation and bone resorption. Osteoblast-lineage cells including osteoblasts and osteocytes express RANKL, which is regulated by several different factors, including hormones, cytokines, and mechanical forces. In vivo and in vitro analyses have demonstrated that various types of mechanosensing proteins on the cell membrane (i.e. mechanosensors) and intracellular mechanosignaling proteins play essential roles in the differentiation and functions of osteoblasts, osteoclasts, and osteocytes via soluble factors, such as sclerostin, Wnt ligands, and RANKL. This section provides an overview of the in vivo and in vitro evidence for the regulation of RANKL expression by mechanosensing and mechanotransduction.
Evidence for osteocyte regulation of bone homeostasis through RANKL expression
To date, the dogma in the field has been that RANKL, an essential cytokine in osteoclast maturation, is released by osteoblasts as a way to coordinate bone growth and bone loss during adult bone remodeling. Now, Hiroshi Takayanagi and colleagues, as well as Charles O'Brien and colleagues, have independently found that osteocytes are the predominant source of RANKL in the adult mouse. As RANKL signaling is a key target in treating osteoporosis, these results have potentially important implications for disease management. Osteocytes embedded in bone have been postulated to orchestrate bone homeostasis by regulating both bone-forming osteoblasts and bone-resorbing osteoclasts. We find here that purified osteocytes express a much higher amount of receptor activator of nuclear factor-κB ligand (RANKL) and have a greater capacity to support osteoclastogenesis in vitro than osteoblasts and bone marrow stromal cells. Furthermore, the severe osteopetrotic phenotype that we observe in mice lacking RANKL specifically in osteocytes indicates that osteocytes are the major source of RANKL in bone remodeling in vivo .
Identification of a KLF5-dependent program and drug development for skeletal muscle atrophy
Skeletal muscle atrophy is caused by various conditions, including aging, disuse related to a sedentary lifestyle and lack of physical activity, and cachexia. Our insufficient understanding of the molecular mechanism underlying muscle atrophy limits the targets for the development of effective pharmacologic treatments and preventions. Here, we identified Krüppel-like factor 5 (KLF5), a zinc-finger transcription factor, as a key mediator of the early muscle atrophy program. KLF5 was up-regulated in atrophying myotubes as an early response to dexamethasone or simulated microgravity in vitro. Skeletal muscle–selective deletion of Klf5 significantly attenuated muscle atrophy induced by mechanical unloading in mice. Transcriptome- and genome-wide chromatin accessibility analyses revealed that KLF5 regulates atrophy-related programs, including metabolic changes and E3-ubiquitin ligase-mediated proteolysis, in coordination with Foxo1. The synthetic retinoic acid receptor agonist Am80, a KLF5 inhibitor, suppressed both dexamethasone- and microgravity-induced muscle atrophy in vitro and oral Am80 ameliorated disuse– and dexamethasone-induced atrophy in mice. Moreover, in three independent sets of transcriptomic data from human skeletal muscle, KLF5 expression significantly increased with age and the presence of sarcopenia and correlated positively with the expression of the atrophy-related ubiquitin ligase genes FBXO32 and TRIM63. These findings demonstrate that KLF5 is a key transcriptional regulator mediating muscle atrophy and that pharmacological intervention with Am80 is a potentially preventive treatment.