Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
59
result(s) for
"Nakatsuji, Norio"
Sort by:
Glucose inhibits cardiac muscle maturation through nucleotide biosynthesis
by
Nakatsuji, Norio
,
Dunham, Christopher
,
Vergnes, Laurent
in
Animal experimentation
,
Animal models
,
Animals
2017
The heart switches its energy substrate from glucose to fatty acids at birth, and maternal hyperglycemia is associated with congenital heart disease. However, little is known about how blood glucose impacts heart formation. Using a chemically defined human pluripotent stem-cell-derived cardiomyocyte differentiation system, we found that high glucose inhibits the maturation of cardiomyocytes at genetic, structural, metabolic, electrophysiological, and biomechanical levels by promoting nucleotide biosynthesis through the pentose phosphate pathway. Blood glucose level in embryos is stable in utero during normal pregnancy, but glucose uptake by fetal cardiac tissue is drastically reduced in late gestational stages. In a murine model of diabetic pregnancy, fetal hearts showed cardiomyopathy with increased mitotic activity and decreased maturity. These data suggest that high glucose suppresses cardiac maturation, providing a possible mechanistic basis for congenital heart disease in diabetic pregnancy. Congenital heart disease is the most common type of birth defect, affecting nearly 1 in 100 children born. It can involve a weak heart, narrowed arteries, narrowed heart valves, or the main arteries of the heart switching places. These conditions can be fatal if untreated and often need surgery to correct. The mother’s blood sugar levels during pregnancy can have a large effect on how likely the baby is to have congenital heart disease. If a pregnant woman has poorly controlled diabetes with rapidly fluctuating sugar levels, she may be at a higher risk of having a child with the condition. High sugar levels in the mother’s blood make the baby up to five times more likely to have congenital heart disease. It has been difficult to find out exactly how sugar levels interfere with heart development because diabetes can affect the fetus in many ways. Nakano et al. used stem cells and experiments in pregnant mice with diabetes to hone in on how high sugar levels affect the fetus’s heart development. First, heart cells were grown from human stem cells, and exposed to high levels of glucose in a dish. This revealed a new mechanism for how high sugar levels affect heart formation: the cells created too many nucleotides, the building blocks of molecules such as DNA. It turns out that high glucose levels boosted a chemical process in the cell known as the pentose phosphate pathway. Some of the products of this pathway are nucleotides. This made the cells divide rapidly, but did not allow them to mature well compared with cells exposed to normal levels of sugar. In another experiment, Nakano et al. found similar results in pregnant diabetic mice. The heart cells in mouse fetuses also divided quickly but matured slowly when exposed to high sugar levels. An estimated 60 million women at an age to have children have diabetes. These new findings help us to understand why and how these women are more likely to have children with congenital heart disease, and further study will hopefully lead to a better way to prevent this condition.
Journal Article
Endodermal differentiation of human pluripotent stem cells to insulin-producing cells in 3D culture
2014
Insulin-producing cells (IPCs) derived from human pluripotent stem cells (hPSCs) may be useful in cell therapy and drug discovery for diabetes. Here, we examined various growth factors and small molecules including those previously reported to develop a robust differentiation method for induction of mature IPCs from hPSCs. We established a protocol that induced PDX1-positive pancreatic progenitor cells at high efficiency and further induced mature IPCs by treatment with forskolin, dexamethasone, Alk5 inhibitor II and nicotinamide in 3D culture. The cells that differentiated into INSULIN-positive and C-PEPTIDE-positive cells secreted insulin in response to glucose stimulation, indicating a functional IPC phenotype. We also found that this method was applicable to different types of hPSCs.
Journal Article
Efficient and Scalable Purification of Cardiomyocytes from Human Embryonic and Induced Pluripotent Stem Cells by VCAM1 Surface Expression
by
Nakatsuji, Norio
,
Uosaki, Hideki
,
Takeuchi, Ayako
in
Antibodies
,
Biology
,
Biomarkers - metabolism
2011
Human embryonic and induced pluripotent stem cells (hESCs/hiPSCs) are promising cell sources for cardiac regenerative medicine. To realize hESC/hiPSC-based cardiac cell therapy, efficient induction, purification, and transplantation methods for cardiomyocytes are required. Though marker gene transduction or fluorescent-based purification methods have been reported, fast, efficient and scalable purification methods with no genetic modification are essential for clinical purpose but have not yet been established. In this study, we attempted to identify cell surface markers for cardiomyocytes derived from hESC/hiPSCs.
We adopted a previously reported differentiation protocol for hESCs based on high density monolayer culture to hiPSCs with some modification. Cardiac troponin-T (TNNT2)-positive cardiomyocytes appeared robustly with 30-70% efficiency. Using this differentiation method, we screened 242 antibodies for human cell surface molecules to isolate cardiomyocytes derived from hiPSCs and identified anti-VCAM1 (Vascular cell adhesion molecule 1) antibody specifically marked cardiomyocytes. TNNT2-positive cells were detected at day 7-8 after induction and 80% of them became VCAM1-positive by day 11. Approximately 95-98% of VCAM1-positive cells at day 11 were positive for TNNT2. VCAM1 was exclusive with CD144 (endothelium), CD140b (pericytes) and TRA-1-60 (undifferentiated hESCs/hiPSCs). 95% of MACS-purified cells were positive for TNNT2. MACS purification yielded 5-10×10(5) VCAM1-positive cells from a single well of a six-well culture plate. Purified VCAM1-positive cells displayed molecular and functional features of cardiomyocytes. VCAM1 also specifically marked cardiomyocytes derived from other hESC or hiPSC lines.
We succeeded in efficiently inducing cardiomyocytes from hESCs/hiPSCs and identifying VCAM1 as a potent cell surface marker for robust, efficient and scalable purification of cardiomyocytes from hESC/hiPSCs. These findings would offer a valuable technological basis for hESC/hiPSC-based cell therapy.
Journal Article
Highly Efficient Differentiation and Enrichment of Spinal Motor Neurons Derived from Human and Monkey Embryonic Stem Cells
by
Nakatsuji, Norio
,
Tooi, Norie
,
Amagai, Yuji
in
Amyotrophic lateral sclerosis
,
Animals
,
Bone morphogenetic proteins
2009
There are no cures or efficacious treatments for severe motor neuron diseases. It is extremely difficult to obtain naïve spinal motor neurons (sMNs) from human tissues for research due to both technical and ethical reasons. Human embryonic stem cells (hESCs) are alternative sources. Several methods for MN differentiation have been reported. However, efficient production of naïve sMNs and culture cost were not taken into consideration in most of the methods.
We aimed to establish protocols for efficient production and enrichment of sMNs derived from pluripotent stem cells. Nestin+ neural stem cell (NSC) clusters were induced by Noggin or a small molecule inhibitor of BMP signaling. After dissociation of NSC clusters, neurospheres were formed in a floating culture containing FGF2. The number of NSCs in neurospheres could be expanded more than 30-fold via several passages. More than 33% of HB9+ sMN progenitor cells were observed after differentiation of dissociated neurospheres by all-trans retinoic acid (ATRA) and a Shh agonist for another week on monolayer culture. HB9+ sMN progenitor cells were enriched by gradient centrifugation up to 80% purity. These HB9+ cells differentiated into electrophysiologically functional cells and formed synapses with myotubes during a few weeks after ATRA/SAG treatment.
The series of procedures we established here, namely neural induction, NSC expansion, sMN differentiation and sMN purification, can provide large quantities of naïve sMNs derived from human and monkey pluripotent stem cells. Using small molecule reagents, reduction of culture cost could be achieved.
Journal Article
Tdrd1/Mtr-1, a Tudor-Related Gene, Is Essential for Male Germ-Cell Differentiation and Nuage/Germinal Granule Formation in Mice
by
Nakatsuji, Norio
,
Noce, Toshiaki
,
Chuma, Shinichiro
in
Animal reproduction
,
Animals
,
Animals, Genetically Modified
2006
Embryonic patterning and germ-cell specification in mice are regulative and depend on zygotic gene activities. However, there are mouse homologues of Drosophila maternal effect genes, including vasa and tudor, that function in posterior and germ-cell determination. We report here that a targeted mutation in Tudor domain containing 1/mouse tudor repeat 1 (Tdrd1/Mtr-1), a tudor-related gene in mice, leads to male sterility because of postnatal spermatogenic defects. TDRD1/MTR-1 predominantly localizes to nuage/ germinal granules, an evolutionarily conserved structure in the germ line, and its intracellular localization is downstream of mouse vasa homologue/DEAD box polypeptide 4 (Mvh/Ddx4), similar to Drosophila vasa-tudor. Tdrd1/Mtr-1 mutants lack, and Mvh/Ddx4 mutants show, strong reduction of intermitochondrial cement, a form of nuage in both male and female germ cells, whereas chromatoid bodies, another specialized form of nuage in spermatogenic cells, are observed in Tdrd1/Mtr-1 mutants. Hence, intermitochondrial cement is not a direct prerequisite for oocyte development and fertility in mice, indicating differing requirements for nuage and/or its components between male and female germ cells. The result also proposes that chromatoid bodies likely have an origin independent of or additional to intermitochondrial cement. The analogy between Mvh-Tdrd1 in mouse spermatogenic cells and vasa-tudor in Drosophila oocytes suggests that this molecular pathway retains an essential role(s) that functions in divergent species and in different stages/sexes of the germ line.
Journal Article
Tudor domain containing 7 (Tdrd7) is essential for dynamic ribonucleoprotein (RNP) remodeling of chromatoid bodies during spermatogenesis
by
Hannon, Gregory J.
,
Nakatsuji, Norio
,
Nakano, Toru
in
Animals
,
biogenesis
,
Biological Sciences
2011
In the male germline in mammals, chromatoid bodies, a specialized assembly of cytoplasmic ribonucleoprotein (RNP), are structurally evident during meiosis and haploidgenesis, but their developmental origin and regulation remain elusive. The tudor domain containing proteins constitute a conserved class of chromatoid body components. We show that tudor domain containing 7 (Tdrd7), the deficiency of which causes male sterility and age-related cataract (as well as glaucoma), is essential for haploid spermatid development and defines, in concert with Tdrd6, key biogenesis processes of chromatoid bodies. Single and double knockouts of Tdrd7 and Tdrd6 demonstrated that these spermiogenic tudor genes orchestrate developmental programs for ordered remodeling of chromatoid bodies, including the initial establishment, subsequent RNP fusion with ubiquitous processing bodies/GW bodies and later structural maintenance. Tdrd7 suppresses LINE1 retrotransposons independently of piwi-interacting RNA (piRNA) biogenesis wherein Tdrd1 and Tdrd9 operate, indicating that distinct Tdrd pathways act against retro-transposons in the male germline. Tdrd6, in contrast, does not affect retrotransposons but functions at a later stage of spermiogenesis when chromatoid bodies exhibit aggresome-like properties. Our results delineate that chromatoid bodies assemble as an integrated compartment incorporating both germline and ubiquitous features as spermatogenesis proceeds and that the conserved tudor family genes act as master regulators of this unique RNP remodeling, which is genetically linked to the male germline integrity in mammals.
Journal Article
Two dimensional electrophysiological characterization of human pluripotent stem cell-derived cardiomyocyte system
2017
Stem cell-derived cardiomyocytes provide a promising tool for human developmental biology, regenerative therapies, disease modeling, and drug discovery. As human pluripotent stem cell-derived cardiomyocytes remain functionally fetal-type, close monitoring of electrophysiological maturation is critical for their further application to biology and translation. However, to date, electrophysiological analyses of stem cell-derived cardiomyocytes has largely been limited by biologically undefined factors including 3D nature of embryoid body, sera from animals, and the feeder cells isolated from mouse. Large variability in the aforementioned systems leads to uncontrollable and irreproducible results, making conclusive studies difficult. In this report, a chemically-defined differentiation regimen and a monolayer cell culture technique was combined with multielectrode arrays for accurate, real-time, and flexible measurement of electrophysiological parameters in translation-ready human cardiomyocytes. Consistent with their natural counterpart, amplitude and dV/dt
max
of field potential progressively increased during the course of maturation. Monolayer culture allowed for the identification of pacemaking cells using the multielectrode array platform and thereby the estimation of conduction velocity, which gradually increased during the differentiation of cardiomyocytes. Thus, the electrophysiological maturation of the human pluripotent stem cell-derived cardiomyocytes in our system recapitulates
in vivo
development. This system provides a versatile biological tool to analyze human heart development, disease mechanisms, and the efficacy/toxicity of chemicals.
Journal Article
Highly efficient transient gene expression and gene targeting in primate embryonic stem cells with helper-dependent adenoviral vectors
by
Nakatsuji, Norio
,
Kawase, Eihachiro
,
Suzuki, Keiichiro
in
Adenoviridae - genetics
,
Animals
,
Biological Sciences
2008
Human embryonic stem (hES) cells are regarded as a potentially unlimited source of cellular materials for regenerative medicine. For biological studies and clinical applications using primate ES cells, the development of a general strategy to obtain efficient gene delivery and genetic manipulation, especially gene targeting via homologous recombination (HR), would be of paramount importance. However, unlike mouse ES (mES) cells, efficient strategies for transient gene delivery and HR in hES cells have not been established. Here, we report that helper-dependent adenoviral vectors (HDAdVs) were able to transfer genes in hES and cynomolgus monkey (Macaca fasicularis) ES (cES) cells efficiently. Without losing the undifferentiated state of the ES cells, transient gene transfer efficiency was [almost equal to]100%. Using HDAdVs with homology arms, approximately one out of 10 chromosomal integrations of the vector was via HR, whereas the rate was only [almost equal to]1% with other gene delivery methods. Furthermore, in combination with negative selection, [almost equal to]45% of chromosomal integrations of the vector were targeted integrations, indicating that HDAdVs would be a powerful tool for genetic manipulation in hES cells and potentially in other types of human stem cells, such as induced pluripotent stem (iPS) cells.
Journal Article
Induction and Enhancement of Cardiac Cell Differentiation from Mouse and Human Induced Pluripotent Stem Cells with Cyclosporin-A
2011
Induced pluripotent stem cells (iPSCs) are novel stem cells derived from adult mouse and human tissues by reprogramming. Elucidation of mechanisms and exploration of efficient methods for their differentiation to functional cardiomyocytes are essential for developing cardiac cell models and future regenerative therapies. We previously established a novel mouse embryonic stem cell (ESC) and iPSC differentiation system in which cardiovascular cells can be systematically induced from Flk1(+) common progenitor cells, and identified highly cardiogenic progenitors as Flk1(+)/CXCR4(+)/VE-cadherin(-) (FCV) cells. We have also reported that cyclosporin-A (CSA) drastically increases FCV progenitor and cardiomyocyte induction from mouse ESCs. Here, we combined these technologies and extended them to mouse and human iPSCs. Co-culture of purified mouse iPSC-derived Flk1(+) cells with OP9 stroma cells induced cardiomyocyte differentiation whilst addition of CSA to Flk1(+) cells dramatically increased both cardiomyocyte and FCV progenitor cell differentiation. Spontaneously beating colonies were obtained from human iPSCs by co-culture with END-2 visceral endoderm-like cells. Appearance of beating colonies from human iPSCs was increased approximately 4.3 times by addition of CSA at mesoderm stage. CSA-expanded human iPSC-derived cardiomyocytes showed various cardiac marker expressions, synchronized calcium transients, cardiomyocyte-like action potentials, pharmacological reactions, and ultra-structural features as cardiomyocytes. These results provide a technological basis to obtain functional cardiomyocytes from iPSCs.
Journal Article
Phenotypic Plasticity of Mouse Spermatogonial Stem Cells
by
Nakatsuji, Norio
,
Chuma, Shinichiro
,
Morimoto, Hiroko
in
Animals
,
c-Kit protein
,
Cell culture
2009
Spermatogonial stem cells (SSCs) continuously undergo self-renewal division to support spermatogenesis. SSCs are thought to have a fixed phenotype, and development of a germ cell transplantation technique facilitated their characterization and prospective isolation in a deterministic manner; however, our in vitro SSC culture experiments indicated heterogeneity of cultured cells and suggested that they might not follow deterministic fate commitment in vitro.
In this study, we report phenotypic plasticity of SSCs. Although c-kit tyrosine kinase receptor (Kit) is not expressed in SSCs in vivo, it was upregulated when SSCs were cultured on laminin in vitro. Both Kit(-) and Kit(+) cells in culture showed comparable levels of SSC activity after germ cell transplantation. Unlike differentiating spermatogonia that depend on Kit for survival and proliferation, Kit expressed on SSCs did not play any role in SSC self-renewal. Moreover, Kit expression on SSCs changed dynamically once proliferation began after germ cell transplantation in vivo.
These results indicate that SSCs can change their phenotype according to their microenvironment and stochastically express Kit. Our results also suggest that activated and non-activated SSCs show distinct phenotypes.
Journal Article