Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
LanguageLanguage
-
SubjectSubject
-
Item TypeItem Type
-
DisciplineDiscipline
-
YearFrom:-To:
-
More FiltersMore FiltersIs Peer Reviewed
Done
Filters
Reset
228
result(s) for
"Newton, John N"
Sort by:
Effect of Delta variant on viral burden and vaccine effectiveness against new SARS-CoV-2 infections in the UK
by
Rourke, Emma
,
Stoesser, Nicole
,
Bell, John I.
in
692/699/255/2514
,
692/700/478/174
,
Adolescent
2021
The effectiveness of the BNT162b2 and ChAdOx1 vaccines against new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections requires continuous re-evaluation, given the increasingly dominant B.1.617.2 (Delta) variant. In this study, we investigated the effectiveness of these vaccines in a large, community-based survey of randomly selected households across the United Kingdom. We found that the effectiveness of BNT162b2 and ChAdOx1 against infections (new polymerase chain reaction (PCR)-positive cases) with symptoms or high viral burden is reduced with the B.1.617.2 variant (absolute difference of 10–13% for BNT162b2 and 16% for ChAdOx1) compared to the B.1.1.7 (Alpha) variant. The effectiveness of two doses remains at least as great as protection afforded by prior natural infection. The dynamics of immunity after second doses differed significantly between BNT162b2 and ChAdOx1, with greater initial effectiveness against new PCR-positive cases but faster declines in protection against high viral burden and symptomatic infection with BNT162b2. There was no evidence that effectiveness varied by dosing interval, but protection was higher in vaccinated individuals after a prior infection and in younger adults. With B.1.617.2, infections occurring after two vaccinations had similar peak viral burden as those in unvaccinated individuals. SARS-CoV-2 vaccination still reduces new infections, but effectiveness and attenuation of peak viral burden are reduced with B.1.617.2.
A large, community-based study in the United Kingdom indicates that the effectiveness of BNT162b2 and ChAdOx1 vaccines against SARS-CoV-2 infections with symptoms or high viral burden is reduced with the Delta variant compared to the Alpha variant.
Journal Article
Impact of vaccination on new SARS-CoV-2 infections in the United Kingdom
by
Rourke, Emma
,
Stoesser, Nicole
,
Bell, John I.
in
692/308/409
,
692/699/255/2514
,
692/700/478/174
2021
The effectiveness of COVID-19 vaccination in preventing new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections in the general community is still unclear. Here, we used the Office for National Statistics COVID-19 Infection Survey—a large community-based survey of individuals living in randomly selected private households across the United Kingdom—to assess the effectiveness of the BNT162b2 (Pfizer–BioNTech) and ChAdOx1 nCoV-19 (Oxford–AstraZeneca; ChAdOx1) vaccines against any new SARS-CoV-2 PCR-positive tests, split according to self-reported symptoms, cycle threshold value (<30 versus ≥30; as a surrogate for viral load) and gene positivity pattern (compatible with B.1.1.7 or not). Using 1,945,071 real-time PCR results from nose and throat swabs taken from 383,812 participants between 1 December 2020 and 8 May 2021, we found that vaccination with the ChAdOx1 or BNT162b2 vaccines already reduced SARS-CoV-2 infections ≥21 d after the first dose (61% (95% confidence interval (CI) = 54–68%) versus 66% (95% CI = 60–71%), respectively), with greater reductions observed after a second dose (79% (95% CI = 65–88%) versus 80% (95% CI = 73–85%), respectively). The largest reductions were observed for symptomatic infections and/or infections with a higher viral burden. Overall, COVID-19 vaccination reduced the number of new SARS-CoV-2 infections, with the largest benefit received after two vaccinations and against symptomatic and high viral burden infections, and with no evidence of a difference between the BNT162b2 and ChAdOx1 vaccines.
Results from the Office of National Statistics COVID-19 Infection Survey in the United Kingdom demonstrate that the ChAdOx1 nCoV-19 and BNT162b2 vaccines reduce the incidence of new SARS-CoV-2 infections by up to 65% with a single dose and up to 80% after two doses, with no significant differences in efficacy observed between the two vaccines.
Journal Article
Changes in health in the countries of the UK and 150 English Local Authority areas 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016
2018
Previous studies have reported national and regional Global Burden of Disease (GBD) estimates for the UK. Because of substantial variation in health within the UK, action to improve it requires comparable estimates of disease burden and risks at country and local levels. The slowdown in the rate of improvement in life expectancy requires further investigation. We use GBD 2016 data on mortality, causes of death, and disability to analyse the burden of disease in the countries of the UK and within local authorities in England by deprivation quintile.
We extracted data from the GBD 2016 to estimate years of life lost (YLLs), years lived with disability (YLDs), disability-adjusted life-years (DALYs), and attributable risks from 1990 to 2016 for England, Scotland, Wales, Northern Ireland, the UK, and 150 English Upper-Tier Local Authorities. We estimated the burden of disease by cause of death, condition, year, and sex. We analysed the association between burden of disease and socioeconomic deprivation using the Index of Multiple Deprivation. We present results for all 264 GBD causes of death combined and the leading 20 specific causes, and all 84 GBD risks or risk clusters combined and 17 specific risks or risk clusters.
The leading causes of age-adjusted YLLs in all UK countries in 2016 were ischaemic heart disease, lung cancers, cerebrovascular disease, and chronic obstructive pulmonary disease. Age-standardised rates of YLLs for all causes varied by two times between local areas in England according to levels of socioeconomic deprivation (from 14 274 per 100 000 population [95% uncertainty interval 12 791–15 875] in Blackpool to 6888 [6145–7739] in Wokingham). Some Upper-Tier Local Authorities, particularly those in London, did better than expected for their level of deprivation. Allowing for differences in age structure, more deprived Upper-Tier Local Authorities had higher attributable YLLs for most major risk factors in the GBD. The population attributable fractions for all-cause YLLs for individual major risk factors varied across Upper-Tier Local Authorities. Life expectancy and YLLs have improved more slowly since 2010 in all UK countries compared with 1990–2010. In nine of 150 Upper-Tier Local Authorities, YLLs increased after 2010. For attributable YLLs, the rate of improvement slowed most substantially for cardiovascular disease and breast, colorectal, and lung cancers, and showed little change for Alzheimer's disease and other dementias. Morbidity makes an increasing contribution to overall burden in the UK compared with mortality. The age-standardised UK DALY rate for low back and neck pain (1795 [1258–2356]) was higher than for ischaemic heart disease (1200 [1155–1246]) or lung cancer (660 [642–679]). The leading causes of ill health (measured through YLDs) in the UK in 2016 were low back and neck pain, skin and subcutaneous diseases, migraine, depressive disorders, and sense organ disease. Age-standardised YLD rates varied much less than equivalent YLL rates across the UK, which reflects the relative scarcity of local data on causes of ill health.
These estimates at local, regional, and national level will allow policy makers to match resources and priorities to levels of burden and risk factors. Improvement in YLLs and life expectancy slowed notably after 2010, particularly in cardiovascular disease and cancer, and targeted actions are needed if the rate of improvement is to recover. A targeted policy response is also required to address the increasing proportion of burden due to morbidity, such as musculoskeletal problems and depression. Improving the quality and completeness of available data on these causes is an essential component of this response.
Bill & Melinda Gates Foundation and Public Health England.
Journal Article
Antibody responses to SARS-CoV-2 vaccines in 45,965 adults from the general population of the United Kingdom
2021
We report that in a cohort of 45,965 adults, who were receiving either the ChAdOx1 or the BNT162b2 SARS-CoV-2 vaccines, in those who had no prior infection with SARS-CoV-2, seroconversion rates and quantitative antibody levels after a single dose were lower in older individuals, especially in those aged >60 years. Two vaccine doses achieved high responses across all ages. Antibody levels increased more slowly and to lower levels with a single dose of ChAdOx1 compared with a single dose of BNT162b2, but waned following a single dose of BNT162b2 in older individuals. In descriptive latent class models, we identified four responder subgroups, including a ‘low responder’ group that more commonly consisted of people aged >75 years, males and individuals with long-term health conditions. Given our findings, we propose that available vaccines should be prioritized for those not previously infected and that second doses should be prioritized for individuals aged >60 years. Further data are needed to better understand the extent to which quantitative antibody responses are associated with vaccine-mediated protection.
Longitudinal tracing of antibody responses to the ChAdOx1 and the BNT162b2 COVID-19 vaccines in 45,965 adults from the United Kingdom give indications for vaccine prioritization.
Journal Article
UK health performance: findings of the Global Burden of Disease Study 2010
2013
The UK has had universal free health care and public health programmes for more than six decades. Several policy initiatives and structural reforms of the health system have been undertaken. Health expenditure has increased substantially since 1990, albeit from relatively low levels compared with other countries. We used data from the Global Burden of Diseases, Injuries, and Risk Factors Study 2010 (GBD 2010) to examine the patterns of health loss in the UK, the leading preventable risks that explain some of these patterns, and how UK outcomes compare with a set of comparable countries in the European Union and elsewhere in 1990 and 2010.
We used results of GBD 2010 for 1990 and 2010 for the UK and 18 other comparator nations (the original 15 members of the European Union, Australia, Canada, Norway, and the USA; henceforth EU15+). We present analyses of trends and relative performance for mortality, causes of death, years of life lost (YLLs), years lived with disability (YLDs), disability-adjusted life-years (DALYs), and healthy life expectancy (HALE). We present results for 259 diseases and injuries and for 67 risk factors or clusters of risk factors relevant to the UK. We assessed the UK's rank for age-standardised YLLs and DALYs for their leading causes compared with EU15+ in 1990 and 2010. We estimated 95% uncertainty intervals (UIs) for all measures.
For both mortality and disability, overall health has improved substantially in absolute terms in the UK from 1990 to 2010. Life expectancy in the UK increased by 4·2 years (95% UI 4·2–4·3) from 1990 to 2010. However, the UK performed significantly worse than the EU15+ for age-standardised death rates, age-standardised YLL rates, and life expectancy in 1990, and its relative position had worsened by 2010. Although in most age groups, there have been reductions in age-specific mortality, for men aged 30–34 years, mortality rates have hardly changed (reduction of 3·7%, 95% UI 2·7–4·9). In terms of premature mortality, worsening ranks are most notable for men and women aged 20–54 years. For all age groups, the contributions of Alzheimer's disease (increase of 137%, 16–277), cirrhosis (65%, −15 to 107), and drug use disorders (577%, 71–942) to premature mortality rose from 1990 to 2010. In 2010, compared with EU15+, the UK had significantly lower rates of age-standardised YLLs for road injury, diabetes, liver cancer, and chronic kidney disease, but significantly greater rates for ischaemic heart disease, chronic obstructive pulmonary disease, lower respiratory infections, breast cancer, other cardiovascular and circulatory disorders, oesophageal cancer, preterm birth complications, congenital anomalies, and aortic aneurysm. Because YLDs per person by age and sex have not changed substantially from 1990 to 2010 but age-specific mortality has been falling, the importance of chronic disability is rising. The major causes of YLDs in 2010 were mental and behavioural disorders (including substance abuse; 21·5% [95 UI 17·2–26·3] of YLDs), and musculoskeletal disorders (30·5% [25·5–35·7]). The leading risk factor in the UK was tobacco (11·8% [10·5–13·3] of DALYs), followed by increased blood pressure (9·0 % [7·5–10·5]), and high body-mass index (8·6% [7·4–9·8]). Diet and physical inactivity accounted for 14·3% (95% UI 12·8–15·9) of UK DALYs in 2010.
The performance of the UK in terms of premature mortality is persistently and significantly below the mean of EU15+ and requires additional concerted action. Further progress in premature mortality from several major causes, such as cardiovascular diseases and cancers, will probably require improved public health, prevention, early intervention, and treatment activities. The growing burden of disability, particularly from mental disorders, substance use, musculoskeletal disorders, and falls deserves an integrated and strategic response.
Bill & Melinda Gates Foundation.
Journal Article
Ct threshold values, a proxy for viral load in community SARS-CoV-2 cases, demonstrate wide variation across populations and over time
2021
Information on SARS-CoV-2 in representative community surveillance is limited, particularly cycle threshold (Ct) values (a proxy for viral load).
We included all positive nose and throat swabs 26 April 2020 to 13 March 2021 from the UK's national COVID-19 Infection Survey, tested by RT-PCR for the N, S, and ORF1ab genes. We investigated predictors of median Ct value using quantile regression.
Of 3,312,159 nose and throat swabs, 27,902 (0.83%) were RT-PCR-positive, 10,317 (37%), 11,012 (40%), and 6550 (23%) for 3, 2, or 1 of the N, S, and ORF1ab genes, respectively, with median Ct = 29.2 (~215 copies/ml; IQR Ct = 21.9-32.8, 14-56,400 copies/ml). Independent predictors of lower Cts (i.e. higher viral load) included self-reported symptoms and more genes detected, with at most small effects of sex, ethnicity, and age. Single-gene positives almost invariably had Ct > 30, but Cts varied widely in triple-gene positives, including without symptoms. Population-level Cts changed over time, with declining Ct preceding increasing SARS-CoV-2 positivity. Of 6189 participants with IgG S-antibody tests post-first RT-PCR-positive, 4808 (78%) were ever antibody-positive; Cts were significantly higher in those remaining antibody negative.
Marked variation in community SARS-CoV-2 Ct values suggests that they could be a useful epidemiological early-warning indicator.
Department of Health and Social Care, National Institutes of Health Research, Huo Family Foundation, Medical Research Council UK; Wellcome Trust.
Journal Article
Protection against SARS-CoV-2 Omicron BA.4/5 variant following booster vaccination or breakthrough infection in the UK
2023
Following primary SARS-CoV-2 vaccination, whether boosters or breakthrough infections provide greater protection against SARS-CoV-2 infection is incompletely understood. Here we investigated SARS-CoV-2 antibody correlates of protection against new Omicron BA.4/5 (re-)infections and anti-spike IgG antibody trajectories after a third/booster vaccination or breakthrough infection following second vaccination in 154,149 adults ≥18 y from the United Kingdom general population. Higher antibody levels were associated with increased protection against Omicron BA.4/5 infection and breakthrough infections were associated with higher levels of protection at any given antibody level than boosters. Breakthrough infections generated similar antibody levels to boosters, and the subsequent antibody declines were slightly slower than after boosters. Together our findings show breakthrough infection provides longer-lasting protection against further infections than booster vaccinations. Our findings, considered alongside the risks of severe infection and long-term consequences of infection, have important implications for vaccine policy.
The duration and strength of protection against SARS-CoV-2 infection resulting from a booster vaccine dose or breakthrough infection are not well understood. This study uses data from the UK COVID-19 Infection Survey to investigate correlates of protection against Omicron BA.4/5 infection and assess antibody responses to booster vaccination and breakthrough infections.
Journal Article
Saltwater intrusion and human health risks for coastal populations under 2050 climate scenarios
by
Zamrsky, Daniel
,
Mueller, William
,
Essink, Gualbert Oude
in
692/699/75/243
,
704/106/242
,
704/106/694/2739
2024
Populations consuming saline drinking water are at greater risk of high blood pressure and potentially other adverse health outcomes. We modelled data and used available datasets to identify countries of higher vulnerability to future saltwater intrusion associated with climate change in 2050 under Representative Concentration Pathways (RCP)4.5 and RCP8.5. We developed three vulnerability criteria to capture geographies with: (1) any coastal areas with projected inland saltwater intrusion of ≥ 1 km inland, (2) > 50% of the population in coastal secondary administrative areas with reliance on groundwater for drinking water, and 3) high national average sodium urinary excretion (i.e., > 3 g/day). We identified 41 nations across all continents (except Antarctica) with ≥ 1 km of inland saltwater intrusion by 2050. Seven low- and middle-income countries of higher vulnerability were all concentrated in South/Southeast Asia. Based on these initial findings, future research should study geological nuances at the local level in higher-risk areas and co-produce with local communities contextually appropriate solutions to secure equitable access to clean drinking water.
Journal Article
Improving the representativeness of UK’s national COVID-19 Infection Survey through spatio-temporal regression and post-stratification
by
Stoesser, Nicole
,
Taylor, Nick G. H.
,
Bell, John I.
in
631/326/596/4130
,
639/705/531
,
692/699/255/2514
2024
Population-representative estimates of SARS-CoV-2 infection prevalence and antibody levels in specific geographic areas at different time points are needed to optimise policy responses. However, even population-wide surveys are potentially impacted by biases arising from differences in participation rates across key groups. Here, we used spatio-temporal regression and post-stratification models to UK’s national COVID-19 Infection Survey (CIS) to obtain representative estimates of PCR positivity (6,496,052 tests) and antibody prevalence (1,941,333 tests) for different regions, ages and ethnicities (7-December-2020 to 4-May-2022). Not accounting for vaccination status through post-stratification led to small underestimation of PCR positivity, but more substantial overestimations of antibody levels in the population (up to 21 percentage points), particularly in groups with low vaccine uptake in the general population. There was marked variation in the relative contribution of different areas and age-groups to each wave. Future analyses of infectious disease surveys should take into account major drivers of outcomes of interest that may also influence participation, with vaccination being an important factor to consider.
Estimates of infection rates from the UK COVID-19 Infection Survey may have been biased by the characteristics of people who chose to take part. Here, the authors show that the survey population had unusually high vaccination rates and adjust infection estimates taking this into account.
Journal Article
Adjusting expected deaths for mortality displacement during the COVID-19 pandemic: a model based counterfactual approach at the level of individuals
by
Deehan, David John
,
Hughes, Andrew
,
Fitzpatrick, Justine
in
Analysis
,
Counterfactual
,
COVID-19
2023
Background
Near-real time surveillance of excess mortality has been an essential tool during the COVID-19 pandemic. It remains critical for monitoring mortality as the pandemic wanes, to detect fluctuations in the death rate associated both with the longer-term impact of the pandemic (e.g. infection, containment measures and reduced service provision by the health and other systems) and the responses that followed (e.g. curtailment of containment measures, vaccination and the response of health and other systems to backlogs). Following the relaxing of social distancing regimes and reduction in the availability of testing, across many countries, it becomes critical to measure the impact of COVID-19 infection. However, prolonged periods of mortality in excess of the expected across entire populations has raised doubts over the validity of using unadjusted historic estimates of mortality to calculate the expected numbers of deaths that form the baseline for computing numbers of
excess
deaths because many individuals died earlier than they would otherwise have done: i
.e. their
mortality was displaced earlier in time to occur during the pandemic rather than when historic rates predicted. This is also often termed “harvesting” in the literature.
Methods
We present a novel Cox-regression-based methodology using time-dependent covariates to estimate the profile of the increased risk of death across time in individuals who contracted COVID-19 among a population of hip fracture patients in England (
N
= 98,365). We use these hazards to simulate a distribution of survival times, in the presence of a COVID-19 positive test, and then calculate survival times based on hazard rates without a positive test and use the difference between the medians of these distributions to estimate the number of days a death has been displaced. This methodology is applied at the individual level, rather than the population level to provide a better understanding of the impact of a positive COVID-19 test on the mortality of groups with different vulnerabilities conferred by sociodemographic and health characteristics. Finally, we apply the mortality displacement estimates to adjust estimates of excess mortality using a “ball and urn” model.
Results
Among the exemplar population we present an end-to-end application of our methodology to estimate the extent of mortality displacement. A greater proportion of older, male and frailer individuals were subject to significant displacement while the magnitude of displacement was higher in younger females and in individuals with lower frailty: groups who, in the absence of COVID-19, should have had a substantial life expectancy.
Conclusion
Our results indicate that calculating the expected number of deaths following the first wave of the pandemic in England based solely on historical trends results in an overestimate, and excess mortality will therefore be underestimated
.
Our findings, using this exemplar dataset are conditional on having experienced a hip fracture, which is not generalisable to the general population. Fractures that impede mobility in the weeks that follow the accident/surgery considerably shorten life expectancy and are in themselves markers of significant frailty. It is therefore important to apply these novel methods to the general population, among whom we anticipate strong patterns in mortality displacement – both in its length and prevalence – by age, sex, frailty and types of comorbidities. This counterfactual method may also be used to investigate a wider range of disruptive population health events. This has important implications for public health monitoring and the interpretation of public health data in England and globally.
Journal Article