Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
65 result(s) for "Nucera, Francesco"
Sort by:
Cellular and molecular features of COVID-19 associated ARDS: therapeutic relevance
The severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) infection can be asymptomatic or cause a disease (COVID-19) characterized by different levels of severity. The main cause of severe COVID-19 and death is represented by acute (or acute on chronic) respiratory failure and acute respiratory distress syndrome (ARDS), often requiring hospital admission and ventilator support. The molecular pathogenesis of COVID-19-related ARDS (by now termed c-ARDS) is still poorly understood. In this review we will discuss the genetic susceptibility to COVID-19, the pathogenesis and the local and systemic biomarkers correlated with c-ARDS and the therapeutic options that target the cell signalling pathways of c-ARDS.
Decreased humoral immune response in the bronchi of rapid decliners with chronic obstructive pulmonary disease
Background Identification of COPD patients with a rapid decline in FEV1 is of particular interest for prognostic and therapeutic reasons. Objective To determine the expression of markers of inflammation in COPD patients with rapid functional decline in comparison to slow or no decliners. Methods In COPD patients monitored for at least 3 years (mean ± SD: 5.8 ± 3 years) for lung functional decline, the expression and localization of inflammatory markers was measured in bronchial biopsies of patients with no lung functional decline (FEV1% + 30 ± 43 ml/year, n = 21), slow (FEV1% ml/year, − 40 ± 19, n = 14) and rapid decline (FEV1% ml/year, − 112 ± 53, n = 15) using immunohistochemistry. ELISA test was used for polymeric immunoglobulin receptor (pIgR) quantitation “in vitro”. Results The expression of secretory IgA was significantly reduced in bronchial epithelium (p = 0.011) and plasma cell numbers was significantly reduced in the bronchial lamina propria (p = 0.017) of rapid decliners compared to no decliners. Bronchial inflammatory cell infiltration, CD4, CD8, CD68, CD20, NK, neutrophils, eosinophils, mast cells, pIgR, was not changed in epithelium and lamina propria of rapid decliners compared to other groups. Plasma cells/mm 2 correlated positively with scored total IgA in lamina propria of all patients. “In vitro” stimulation of 16HBE cells with LPS (10 μg/ml) and IL-8 (10 ng/ml) induced a significant increase while H 2 O 2 (100 μM) significantly decreased pIgR epithelial expression. Conclusion These data show an impaired humoral immune response in rapid decliners with COPD, marked by reduced epithelial secretory IgA and plasma cell numbers in the bronchial lamina propria. These findings may help in the prognostic stratification and treatment of COPD.
Expression of targets of the RNA-binding protein AUF-1 in human airway epithelium indicates its role in cellular senescence and inflammation
The RNA-binding protein AU-rich-element factor-1 (AUF-1) participates to posttranscriptional regulation of genes involved in inflammation and cellular senescence, two pathogenic mechanisms of chronic obstructive pulmonary disease (COPD). Decreased AUF-1 expression was described in bronchiolar epithelium of COPD patients versus controls and cytokine- and cigarette smoke-challenged human airway epithelial cells, prompting the identification of epithelial AUF-1-targeted transcripts and function, and investigation on the mechanism of its loss. RNA immunoprecipitation-sequencing (RIP-Seq) identified, in the human airway epithelial cell line BEAS-2B, 494 AUF-1-bound mRNAs enriched in their 3'-untranslated regions for a Guanine-Cytosine (GC)-rich binding motif. AUF-1 association with selected transcripts and with a synthetic GC-rich motif were validated by biotin pulldown. AUF-1-targets' steady-state levels were equally affected by partial or near-total AUF-1 loss induced by cytomix (TNFα/IL1β/IFNγ/10 nM each) and siRNA, respectively, with differential transcript decay rates. Cytomix-mediated decrease in AUF-1 levels in BEAS-2B and primary human small-airways epithelium (HSAEC) was replicated by treatment with the senescence- inducer compound etoposide and associated with readouts of cell-cycle arrest, increase in lysosomal damage and senescence-associated secretory phenotype (SASP) factors, and with AUF-1 transfer in extracellular vesicles, detected by transmission electron microscopy and immunoblotting. Extensive and genome ontology analysis found, consistent with AUF-1 functions, enriched RIP-Seq-derived AUF-1-targets in COPD-related pathways involved in inflammation, senescence, gene regulation and also in the public SASP proteome atlas; AUF-1 target signature was also significantly represented in multiple transcriptomic COPD databases generated from primary HSAEC, from lung tissue and from single-cell RNA-sequencing, displaying a predominant downregulation of expression. Loss of intracellular AUF-1 may alter posttranscriptional regulation of targets particularly relevant for protection of genomic integrity and gene regulation, thus concurring to airway epithelial inflammatory responses related to oxidative stress and accelerated aging. Exosomal-associated AUF-1 may in turn preserve bound RNA targets and sustain their function, participating to spreading of inflammation and senescence to neighbouring cells.
Evaluation of Innate Immune Mediators Related to Respiratory Viruses in the Lung of Stable COPD Patients
Background: Little is known about the innate immune response to viral infections in stable Chronic Obstructive Pulmonary Disease (COPD). Objectives: To evaluate the innate immune mediators related to respiratory viruses in the bronchial biopsies and lung parenchyma of stable COPD patients. Methods: We evaluated the immunohistochemical (IHC) expression of Toll-like receptors 3-7-8-9 (TLR-3-7-8-9), TIR domain-containing adaptor inducing IFNβ (TRIF), Interferon regulatory factor 3 (IRF3), Phospho interferon regulatory factor 3  ( pIRF3), Interferon regulatory factor 7 (IRF7), Phospho interferon regulatory factor 7 (pIRF7), retinoic acid-inducible gene I (RIG1), melanoma differentiation-associated protein 5 (MDA5), Probable ATP-dependent RNA helicase DHX58 ( LGP2), Mitochondrial antiviral-signaling protein (MAVS), Stimulator of interferon genes (STING), DNA-dependent activator of IFN regulatory factors (DAI), forkhead box protein A3(FOXA3), Interferon alfa (IFNα), and Interferon beta (IFNβ) in the bronchial mucosa of patients with mild/moderate (n = 16), severe/very severe (n = 18) stable COPD, control smokers (CS) (n = 12), and control non-smokers (CNS) (n = 12). We performed similar IHC analyses in peripheral lung from COPD (n = 12) and CS (n = 12). IFNα and IFNβ were assessed in bronchoalveolar lavage (BAL) supernatant from CNS (n = 8), CS (n = 9) and mild/moderate COPD (n = 12). Viral load, including adenovirus-B, -C, Bocavirus, Respiratory syncytial Virus (RSV),Human Rhinovirus (HRV), Coronavirus, Influenza virus A (FLU-A), Influenza virus B (FLU-B), and Parainfluenzae-1 were measured in bronchial rings and lung parenchyma of COPD patients and the related control group (CS). Results: Among the viral-related innate immune mediators, RIG1, LGP2, MAVS, STING, and DAI resulted well expressed in the bronchial and lung tissues of COPD patients, although not in a significantly different mode from control groups. Compared to CS, COPD patients showed no significant differences of viral load in bronchial rings and lung parenchyma. Conclusions: Some virus-related molecules are well-expressed in the lung tissue and bronchi of stable COPD patients independently of the disease severity, suggesting a “primed” tissue environment capable of sensing the potential viral infections occurring in these patients.
MiRNAs and Microbiota in Non-Small Cell Lung Cancer (NSCLC): Implications in Pathogenesis and Potential Role in Predicting Response to ICI Treatment
Lung cancer (LC) is one of the most prevalent cancers in both men and women and today is still characterized by high mortality and lethality. Several biomarkers have been identified for evaluating the prognosis of non-small cell lung cancer (NSCLC) patients and selecting the most effective therapeutic strategy for these patients. The introduction of innovative targeted therapies and immunotherapy with immune checkpoint inhibitors (ICIs) for the treatment of NSCLC both in advanced stages and, more recently, also in early stages, has revolutionized and significantly improved the therapeutic scenario for these patients. Promising evidence has also been shown by analyzing both micro-RNAs (miRNAs) and the lung/gut microbiota. MiRNAs belong to the large family of non-coding RNAs and play a role in the modulation of several key mechanisms in cells such as proliferation, differentiation, inflammation, and apoptosis. On the other hand, the microbiota (a group of several microorganisms found in human orgasms such as the gut and lungs and mainly composed by bacteria) plays a key role in the modulation of inflammation and, in particular, in the immune response. Some data have shown that the microbiota and the related microbiome can modulate miRNAs expression and vice versa by regulating several intracellular signaling pathways that are known to play a role in the pathogenesis of lung cancer. This evidence suggests that this axis is key to predicting the prognosis and effectiveness of ICIs in NSCLC treatment and could represent a new target in the treatment of NSCLC. In this review, we highlight the most recent evidence and data regarding the role of both miRNAs and the lung/gut microbiome in the prediction of prognosis and response to ICI treatment, focusing on the link between miRNAs and the microbiome. A new potential interaction based on the underlying modulated intracellular signaling pathways is also shown.
Alarmins and Emerging Cytokines in COPD: Histopathological Insights and Novel Therapeutic Targets
Among these, IL-33 has been the most extensively studied in animal and in vitro models, consistently demonstrating a pro-inflammatory role in COPD (5). COPD diagnosis was confirmed by pulmonary function tests according to American Thoracic Society (ATS) and European Respiratory Society (ERS) guidelines. [...]our study demonstrates that IL-33 and IL-40 are upregulated, while IL-41 is downregulated in COPD lung tissue.
Role of ATG4 Autophagy-Related Protein Family in the Lower Airways of Patients with Stable COPD
Autophagy is a complex physiological pathway mediating homeostasis and survival of cells degrading damaged organelles and regulating their recycling. Physiologic autophagy can maintain normal lung function, decrease lung cellular senescence, and inhibit myofibroblast differentiation. It is well known that autophagy is activated in several chronic inflammatory diseases; however, its role in the pathogenesis of chronic obstructive pulmonary disease (COPD) and the expression of autophagy-related genes (ATGs) in lower airways of COPD patients is still controversial. The expression and localization of all ATG proteins that represented key components of the autophagic machinery modulating elongation, closure, and maturation of autophagosome membranes were retrospectively measured in peripheral lungs of patients with stable COPD (n = 10), control smokers with normal lung function (n = 10), and control nonsmoking subjects (n = 8) using immunohistochemical analysis. These results show an increased expression of ATG4 protein in alveolar septa and bronchiolar epithelium of stable COPD patients compared to smokers with normal lung function and non-smoker subjects. In particular, the genes in the ATG4 protein family (including ATG4A, ATG4B, ATG4C, and ATG4D) that have a key role in the modulation of the physiological autophagic machinery are the most important ATGs increased in the compartment of lower airways of stable COPD patients, suggesting that the alteration shown in COPD patients can be also correlated to impaired modulation of autophagic machinery modulating elongation, closure, and maturation of autophagosomes membranes. Statistical analysis was performed by the Kruskal–Wallis test and the Mann–Whitney U test for comparison between groups. A statistically significant increased expression of ATG4A (p = 0.0047), ATG4D (p = 0.018), and ATG5 (p = 0.019) was documented in the bronchiolar epithelium as well in alveolar lining for ATG4A (p = 0.0036), ATG4B (p = 0.0054), ATG4C (p = 0.0064), ATG4D (p = 0.0084), ATG5 (p = 0.0088), and ATG7 (p = 0.018) in patients with stable COPD compared to control groups. The ATG4 isoforms may be considered as additional potential targets for the development of new drugs in COPD.
Impaired SERPIN–Protease Balance in the Peripheral Lungs of Stable COPD Patients
The protease–antiprotease balance is involved in many biological processes, including blood coagulation, tissue remodeling, inflammation and immune responses. The aim of this study is to determine the balance between SERPINs and some related proteases in the lungs of stable COPD patients. In this cross-sectional study, the expression and localization of human SERPINs (anti-proteases) and some related proteases were measured in the lung parenchyma of mild-moderate COPD (MCOPD, n = 13) patients, control smokers (CS, n = 14) and control nonsmokers (CNS, n = 12) using transcriptome analysis, immunohistochemistry, and ELISA tests. Peripheral lung transcriptomic data showed increased mRNA levels of tissue plasminogen activator (tPA), cathepsin-L and caspase-1 as well as increased SERPINs A6, B3, B5, B11, B13 in the COPD group compared to the CNS group. At the protein level, IHC analysis showed that tPA and cathepsin-L increased in the bronchiolar epithelium and alveolar septa of the CS and COPD groups compared to the CNS group, as well as SERPINB5 and B13 in the alveolar macrophages and alveolar septa of the CS and COPD groups compared to the CNS group. SERPINA6 was shown to be decreased in the bronchiolar epithelium, bronchiolar lamina propria, and alveolar septa of the CS and COPD groups compared to the CNS group and was positively correlated with lung function. SERPINB3 was decreased in the alveolar septa of the CS group compared to the CNS group. The ELISA tests showed that in the total lung extracts, decreased levels of SERPINA6 and increased caspase-1 were shown in the COPD group compared to the CNS or both control groups, respectively. These data show an imbalance, at the protein level, of SERPINs and some related proteases in the lungs of the CS and stable COPD groups. These alterations may play a role in damaging the lung parenchyma of susceptible COPD patients.
Risk of diabetes mellitus during regular long-term inhaled glucocorticoid treatment in COPD patients: narrative review of the literature.
Glucocorticoids are anti-inflammatory drugs used in combination with inhaled bronchodilators, such as β2-agonists and antimuscarinics, for the treatment of stable chronic obstructive pulmonary disease (COPD), to improve respiratory symptoms, such as exertional dyspnoea, and to decrease the risk of future COPD exacerbations. However, it remains controversial whether their regular long-term use increases the risk of developing diabetes mellitus. The objective of this narrative review is therefore to analyse all the randomized controlled trials performed in patients with stable COPD to identify the risk of new onset diabetes mellitus during a long-term (at least 52 weeks) regular treatment with inhaled glucocorticoids alone compared to placebo. From a literature search on PubMed, 19 studies fulfilling these criteria have been identified. The inhaled glucocorticoids administered were: fluticasone propionate (7 studies), budesonide (6 studies), mometasone furoate (3 studies), beclomethasone dipropionate (1 study), triamcinolone acetonide (1 study), and fluticasone furoate (1 study) respectively. Only 3 out of the 19 trials identified in our narrative review reported data on diabetes mellitus, and in these the incidence of diabetes mellitus was not significantly different in both treatment arms (inhaled glucocorticoids and placebo), regardless of the type of glucocorticoid used.
Rischio di diabete mellito durante il trattamento regolare a lungo termine con glucocorticoidi per via inalatoria nei pazienti con BPCO: revisione narrativa della letteratura
Glucocorticoids are anti-inflammatory drugs used in combination with inhaled bronchodilators, such as β2-agonists and antimuscarinics, for the treatment of stable chronic obstructive pulmonary disease (COPD), to improve respiratory symptoms, such as exertional dyspnoea, and to decrease the risk of future COPD exacerbations. However, it remains controversial whether their regular long-term use increases the risk of developing diabetes mellitus. The objective of this narrative review is therefore to analyse all the randomized controlled trials performed in patients with stable COPD to identify the risk of new onset diabetes mellitus during a long-term (at least 52 weeks) regular treatment with inhaled glucocorticoids alone compared to placebo. From a literature search on PubMed, 19 studies fulfilling these criteria have been identified. The inhaled glucocorticoids administered were: fluticasone propionate (7 studies), budesonide (6 studies), mometasone furoate (3 studies), beclomethasone dipropionate (1 study), triamcinolone acetonide (1 study), and fluticasone furoate (1 study) respectively. Only 3 out of the 19 trials identified in our narrative review reported data on diabetes mellitus, and in these the incidence of diabetes mellitus was not significantly different in both treatment arms (inhaled glucocorticoids and placebo), regardless of the type of glucocorticoid used.