Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
33 result(s) for "Olayemi, Ayodeji"
Sort by:
Systematics, Ecology, and Host Switching: Attributes Affecting Emergence of the Lassa Virus in Rodents across Western Africa
Ever since it was established that rodents serve as reservoirs of the zoonotic Lassa virus (LASV), scientists have sought to answer the questions: which populations of rodents carry the virus? How do fluctuations in LASV prevalence and rodent abundance influence Lassa fever outbreaks in humans? What does it take for the virus to adopt additional rodent hosts, proliferating what already are devastating cycles of rodent-to-human transmission? In this review, we examine key aspects of research involving the biology of rodents that affect their role as LASV reservoirs, including phylogeography, demography, virus evolution, and host switching. We discuss how this knowledge can help control Lassa fever and suggest further areas for investigation.
New Hosts of The Lassa Virus
Lassa virus (LASV) causes a deadly haemorrhagic fever in humans, killing several thousand people in West Africa annually. For 40 years, the Natal multimammate rat, Mastomys natalensis , has been assumed to be the sole host of LASV. We found evidence that LASV is also hosted by other rodent species: the African wood mouse Hylomyscus pamfi in Nigeria, and the Guinea multimammate mouse Mastomys erythroleucus in both Nigeria and Guinea. Virus strains from these animals were isolated in the BSL-4 laboratory and fully sequenced. Phylogenetic analyses of viral genes coding for glycoprotein, nucleoprotein, polymerase and matrix protein show that Lassa strains detected in M. erythroleucus belong to lineages III and IV. The strain from H. pamfi clusters close to lineage I (for S gene) and between II & III (for L gene). Discovery of new rodent hosts has implications for LASV evolution and its spread into new areas within West Africa.
MHC-I alleles mediate clearance and antibody response to the zoonotic Lassa virus in Mastomys rodent reservoirs
West African Mastomys rodents are the primary reservoir of the zoonotic Lassa virus (LASV). The virus causes haemorrhagic Lassa fever and considerable mortality in humans. To date, the role of Mastomys immunogenetics in resistance to, and persistence of, LASV infections is largely unknown. Here, we investigated the role of Major Histocompatibility Complex class I (MHC-I) on LASV infection status (i.e., active vs. cleared infection, determined via PCR and an immunofluorescence assay on IgG antibodies, respectively) in Mastomys natalensis and M . erythroleucus sampled within southwestern Nigeria. We identified more than 190 and 90 MHC-I alleles by Illumina high throughput-sequencing in M . natalensis and M . erythroleucus , respectively, with different MHC allele compositions and frequencies between LASV endemic and non-endemic sites. In M . natalensis , the MHC allele ManaMHC-I*006 was negatively associated with active infections (PCR-positive) and positively associated with cleared infections (IgG-positive) simultaneously, suggesting efficient immune responses that facilitate LASV clearance in animals carrying this allele. Contrarily, alleles ManaMHC-I*008 and ManaMHC-I*021 in M . natalensis , and MaerMHC-I*008 in M . erythroleucus , were positively associated with active infection, implying susceptibility. Alleles associated with susceptibility shared a glutamic acid at the positively selected codon 57, while ManaMHC-I*006 featured an arginine. There was no link between number of MHC alleles per Mastomys individual and LASV prevalence. Thus, specific alleles, but not MHC diversity per se , seem to mediate antibody responses to viremia. We conclude that co-evolution with LASV likely shaped the MHC-I diversity of the main LASV reservoirs in southwestern Nigeria, and that information on reservoir immunogenetics may hold insights into transmission dynamics and zoonotic spillover risks.
Circulation of Lassa virus across the endemic Edo-Ondo axis, Nigeria, with cross-species transmission between multimammate mice
We phylogenetically compared sequences of the zoonotic Lassa virus (LASV) obtained from Mastomys rodents in seven localities across the highly endemic Edo and Ondo States within Nigeria. Sequencing 1641 nt from the S segment of the virus genome, we resolved clades within lineage II that were either limited to Ebudin and Okhuesan in Edo state (2g-beta) or along Owo-Okeluse-Ifon in Ondo state (2g-gamma). We also found clades within Ekpoma, a relatively large cosmopolitan town in Edo state, that extended into other localities within Edo (2g-alpha) and Ondo (2g-delta). LASV variants from M. natalensis within Ebudin and Ekpoma in Edo State (dated approximately 1961) were more ancient compared to those from Ondo state (approximately 1977), suggesting a broadly east-west virus migration across south-western Nigeria; a pattern not always consistent with LASV sequences derived from humans in the same localities. Additionally, in Ebudin and Ekpoma, LASV sequences between M. natalensis and M. erythroleucus were interspersed on the phylogenetic tree, but those from M. erythroleucus were estimated to emerge more recently (approximately 2005). Overall, our results show that LASV amplification in certain localities (reaching a prevalence as high as 76% in Okeluse), anthropogenically-aided spread of rodent-borne variants amidst the larger towns (involving communal accommodation such as student hostels), and virus-exchange between syntopic M. natalensis and M. erythroleucus rodents (as the latter, a savanna species, encroaches southward into the degraded forest) pose perpetual zoonotic hazard across the Edo-Ondo Lassa fever belt, threatening to accelerate the dissemination of the virus into non endemic areas.
Widespread arenavirus occurrence and seroprevalence in small mammals, Nigeria
Background Lassa fever, killing thousands of people annually, is the most reported viral zoonotic disease in Nigeria. Recently, different rodent species carrying diverse lineages of the Lassa virus (LASV) in addition to a novel Mobala-like genetic sequence were detected within the country. Here, screening 906 small mammal specimens from 11 localities for IgG antibodies and incorporating previous PCR detection data involving the same populations, we further describe arenavirus prevalence across Nigeria in relation to host species and geographical location. Methods Small mammals were trapped during the period 2011–2015 according to geographical location (endemic and non-endemic zones for Lassa fever), season (rainy and dry seasons between 2011 and 2012 for certain localities) and habitat (indoors, peridomestic settings and sylvatic vegetation). Identification of animal specimens from genera such as Mastomys and Mus ( Nannomys ) was assisted by DNA sequencing. Small mammals were tested for LASV IgG antibody using an indirect immunofluorescence assay (IFA). Results Small mammals were infected in both the endemic and non-endemic zones for Lassa fever, with a wider range of species IgG-positive ( n = 8) than those which had been previously detected to be PCR-positive ( n = 3). IgG-positive species, according to number of infected individuals, were Mastomys natalensis ( n = 40), Mastomys erythroleucus ( n = 15), Praomys daltoni ( n = 6), Mus baoulei ( n = 5), Rattus rattus ( n = 2) , Crocidura spp. ( n = 2), Mus minutoides ( n = 1) and Praomys misonnei ( n = 1) . Multimammate mice ( Mastomys natalensis and M. erythroleucus ) were the most ubiquitously infected, with animals testing positive by either PCR or IgG in 7 out of the 11 localities sampled. IgG prevalence in M. natalensis ranged from 1% in Abagboro, 17–36 % in Eguare Egoro, Ekpoma and Ngel Nyaki, up to 52 % in Mayo Ranewo. Prevalence according to locality, season and age was not, however, statistically significant for M. natalensis in Eguare Egoro and Ekpoma, localities that were sampled longitudinally. Conclusions Overall, our study demonstrates that arenavirus occurrence is probably more widely distributed geographically and in extent of host taxa than is currently realized. This expanded scope should be taken into consideration in Lassa fever control efforts. Further sampling should also be carried out to isolate and characterize potential arenaviruses present in small mammal populations we found to be seropositive.
Detection of Lassa Virus-Reactive IgG Antibodies in Wild Rodents: Validation of a Capture Enzyme-Linked Immunological Assay
The aim of this study was to evaluate the use of a capture enzyme-linked immunosorbent assay (ELISA) for the detection of LASV-reactive IgG antibodies in Mastomys rodents. The assay was used for laboratory-bred Mastomys rodents, as well as for animals caught in the wild in various regions of West Africa. The ELISA reached an accuracy of 97.1% in samples of known exposure, and a comparison to an immunofluorescence assay (IFA) revealed a very strong agreement between the ELISA and IFA results (Cohen’s kappa of 0.81). The agreement is valid in Nigeria, and in Guinea and Sierra Leone where the lineages II and IV are circulating, respectively. Altogether, these results indicate that this capture ELISA is suitable for LASV IgG serostatus determination in Mastomys rodents as an alternative to IFA. This assay will be a strong, accurate, and semi-quantitative alternative for rodent seroprevalence studies that does not depend on biosafety level 4 infrastructures, providing great benefits for ecology and epidemiology studies of Lassa fever, a disease listed on the Research and Development Blueprint of the WHO.
The niche of One Health approaches in Lassa fever surveillance and control
Lassa fever (LF), a zoonotic illness, represents a public health burden in West African countries where the Lassa virus (LASV) circulates among rodents. Human exposure hinges significantly on LASV ecology, which is in turn shaped by various parameters such as weather seasonality and even virus and rodent-host genetics. Furthermore, human behaviour, despite playing a key role in the zoonotic nature of the disease, critically affects either the spread or control of human-to-human transmission. Previous estimations on LF burden date from the 80s and it is unclear how the population expansion and the improvement on diagnostics and surveillance methods have affected such predictions. Although recent data have contributed to the awareness of epidemics, the real impact of LF in West African communities will only be possible with the intensification of interdisciplinary efforts in research and public health approaches. This review discusses the causes and consequences of LF from a One Health perspective, and how the application of this concept can improve the surveillance and control of this disease in West Africa.
Can DNA help trace the local trade of pangolins? Conservation genetics of white-bellied pangolins from the Dahomey Gap (West Africa)
Background African pangolins are currently experiencing unprecedented levels of harvesting, feeding both local demands and the illegal international trade. So far, the lack of knowledge on the population genetics of African pangolins has hampered any attempts at assessing their demographic status and tracing their trade at the local scale. We conducted a pioneer study on the genetic tracing of the African pangolin trade in the Dahomey Gap (DG). We sequenced and genotyped 189 white-bellied pangolins from 18 forests and 12 wildlife markets using one mitochondrial fragment and 20 microsatellite loci. Results Tree-based assignment procedure showed that the pangolin trade is endemic to the DG region, as it was strictly fed by the the Dahomey Gap lineage (DGL). DGL populations were characterized by low levels of genetic diversity, an overall absence of equilibrium, important inbreeding levels, and lack of geographic structure. We identified a 92–98% decline in DGL effective population size 200–500 ya—concomitant with major political transformations along the ‘Slave Coast’—leading to contemporaneous estimates being inferior to minimum viable population size (< 500). Genetic tracing suggested that wildlife markets from the DG sourced pangolins through the entire DGL range. Our loci provided the necessary power to distinguish among all the genotyped pangolins, tracing the dispatch of a same individual on the markets and within local communities. We developed an approach combining rarefaction analysis of private allele frequencies with cross-validation of observed data that traced five traded pangolins to their forest origin, c. 200–300 km away from the markets. Conclusions Although the genetic toolkit that we designed from traditional markers can prove helpful to trace the illegal trade in pangolins, our tracing ability was limited by the lack of population structure within the DGL. Given the deleterious combination of genetic, demographic, and trade-related factors affecting DGL populations, the conservation status of white-bellied pangolins in the DG should be urgently re-evaluated.
Determining Ancestry between Rodent- and Human-Derived Virus Sequences in Endemic Foci: Towards a More Integral Molecular Epidemiology of Lassa Fever within West Africa
Lassa fever is a viral hemorrhagic illness responsible for thousands of human deaths in West Africa yearly. Rodents are known as natural reservoirs of the causative Lassa mammarenavirus (LASV) while humans are regarded as incidental, spill-over hosts. Analysis of genetic sequences continues to add to our understanding of the evolutionary history, emergence patterns, and the epidemiology of LASV. Hitherto, the source of data in such investigations has mainly comprised human clinical samples. Presently, a rise in the quantity of virus strains accessed through ecological studies over the last 15 years now allows us to explore how LASV sequences obtained from rodents might affect phylogenetic patterns. In this study, we phylogenetically compared LASV sequences obtained from both rodents and humans across West Africa, including those from two localities highly endemic for the disease: Ekpoma in Nigeria and Kenema in Sierra Leone. We performed a time-calibrated phylogeny, using a Bayesian analysis on 198 taxa, including 102 sequences from rodents and 96 from humans. Contrary to expectation, our results show that LASV strains detected in humans within these localities, even those sampled recently, are consistently ancient to those circulating in rodents in the same area. We discuss the possibilities connected to this preliminary outcome. We also propose modalities to guide more comprehensive comparisons of human and rodent data in LASV molecular epidemiological studies.
Warthog Genomes Resolve an Evolutionary Conundrum and Reveal Introgression of Disease Resistance Genes
Abstract African wild pigs have a contentious evolutionary and biogeographic history. Until recently, desert warthog (Phacochoerus aethiopicus) and common warthog (P. africanus) were considered a single species. Molecular evidence surprisingly suggested they diverged at least 4.4 million years ago, and possibly outside of Africa. We sequenced the first whole-genomes of four desert warthogs and 35 common warthogs from throughout their range. We show that these two species diverged much later than previously estimated, 400,000–1,700,000 years ago depending on assumptions of gene flow. This brings it into agreement with the paleontological record. We found that the common warthog originated in western Africa and subsequently colonized eastern and southern Africa. During this range expansion, the common warthog interbred with the desert warthog, presumably in eastern Africa, underlining this region’s importance in African biogeography. We found that immune system–related genes may have adaptively introgressed into common warthogs, indicating that resistance to novel diseases was one of the most potent drivers of evolution as common warthogs expanded their range. Hence, we solve some of the key controversies surrounding warthog evolution and reveal a complex evolutionary history involving range expansion, introgression, and adaptation to new diseases.