Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
47
result(s) for
"Ono, Takehito"
Sort by:
Recent advances in osteoclast biology
2018
The bone is an essential organ for locomotion and protection of the body, as well as hematopoiesis and mineral homeostasis. In order to exert these functions throughout life, bone tissue undergoes a repeating cycle of osteoclastic bone resorption and osteoblastic bone formation. The osteoclast is a large, multinucleated cell that is differentiated from monocyte/macrophage lineage cells by macrophage colony-stimulating factor (M-CSF) and receptor activator of nuclear factor-κB ligand (RANKL). RANKL transduces its signal through the signaling receptor, RANK. RANKL/RANK signaling activates NFATc1, the master regulator of osteoclastogenesis, to induce osteoclastogenic gene expression. Many types of cells express RANKL to support osteoclastogenesis depending on the biological context and the dysregulation of RANKL signaling leads to bone diseases such as osteoporosis and osteopetrosis. This review outlines the findings on osteoclast and RANKL/RANK signaling that have accumulated to date.
Journal Article
RANKL biology: bone metabolism, the immune system, and beyond
by
Nakashima, Tomoki
,
Sasaki, Fumiyuki
,
Hayashi, Mikihito
in
Amino acids
,
Bone diseases
,
Chromosomes
2020
Receptor activator of NF-κB (RANK) ligand (RANKL) induces the differentiation of monocyte/macrophage-lineage cells into the bone-resorbing cells called osteoclasts. Because abnormalities in RANKL, its signaling receptor RANK, or decoy receptor osteoprotegerin (OPG) lead to bone diseases such as osteopetrosis, the RANKL/RANK/OPG system is essential for bone resorption. RANKL was first discovered as a T cell-derived activator of dendritic cells (DCs) and has many functions in the immune system, including organogenesis, cellular development. The essentiality of RANKL in the bone and the immune systems lies at the root of the field of \"osteoimmunology.\" Furthermore, this cytokine functions beyond the domains of bone metabolism and the immune system, e.g., mammary gland and hair follicle formation, body temperature regulation, muscle metabolism, and tumor development. In this review, we will summarize the current understanding of the functions of the RANKL/RANK/OPG system in biological processes.
Journal Article
IL-17-producing γδ T cells enhance bone regeneration
2016
Immune responses are crucial not only for host defence against pathogens but also for tissue maintenance and repair after injury. Lymphocytes are involved in the healing process after tissue injury, including bone fracture and muscle damage. However, the specific immune cell subsets and mediators of healing are not entirely clear. Here we show that γδ T cells produce IL-17A, which promotes bone formation and facilitates bone fracture healing. Repair is impaired in IL-17A-deficient mice due to a defect in osteoblastic bone formation. IL-17A accelerates bone formation by stimulating the proliferation and osteoblastic differentiation of mesenchymal progenitor cells. This study identifies a novel role for IL-17-producing γδ T cells in skeletal tissue regeneration.
γδ T cells are innate-like lymphocytes that regulate immune responses by producing IL-17A or IFN-γ, but have no known role in bone healing. Here the authors show a nonimmune bone-regenerative function of IL-17A produced by the Vγ6+ subset in mice.
Journal Article
The regulation of RANKL by mechanical force
by
Ono Takehito
,
Nakashima Tomoki
,
Sasaki Fumiyuki
in
Bone resorption
,
Cell differentiation
,
Cell membranes
2021
Receptor activator of nuclear factor-κB ligand (RANKL) is a key mediator of osteoclast differentiation and bone resorption. Osteoblast-lineage cells including osteoblasts and osteocytes express RANKL, which is regulated by several different factors, including hormones, cytokines, and mechanical forces. In vivo and in vitro analyses have demonstrated that various types of mechanosensing proteins on the cell membrane (i.e. mechanosensors) and intracellular mechanosignaling proteins play essential roles in the differentiation and functions of osteoblasts, osteoclasts, and osteocytes via soluble factors, such as sclerostin, Wnt ligands, and RANKL. This section provides an overview of the in vivo and in vitro evidence for the regulation of RANKL expression by mechanosensing and mechanotransduction.
Journal Article
Identification of a KLF5-dependent program and drug development for skeletal muscle atrophy
2021
Skeletal muscle atrophy is caused by various conditions, including aging, disuse related to a sedentary lifestyle and lack of physical activity, and cachexia. Our insufficient understanding of the molecular mechanism underlying muscle atrophy limits the targets for the development of effective pharmacologic treatments and preventions. Here, we identified Krüppel-like factor 5 (KLF5), a zinc-finger transcription factor, as a key mediator of the early muscle atrophy program. KLF5 was up-regulated in atrophying myotubes as an early response to dexamethasone or simulated microgravity in vitro. Skeletal muscle–selective deletion of Klf5 significantly attenuated muscle atrophy induced by mechanical unloading in mice. Transcriptome- and genome-wide chromatin accessibility analyses revealed that KLF5 regulates atrophy-related programs, including metabolic changes and E3-ubiquitin ligase-mediated proteolysis, in coordination with Foxo1. The synthetic retinoic acid receptor agonist Am80, a KLF5 inhibitor, suppressed both dexamethasone- and microgravity-induced muscle atrophy in vitro and oral Am80 ameliorated disuse– and dexamethasone-induced atrophy in mice. Moreover, in three independent sets of transcriptomic data from human skeletal muscle, KLF5 expression significantly increased with age and the presence of sarcopenia and correlated positively with the expression of the atrophy-related ubiquitin ligase genes FBXO32 and TRIM63. These findings demonstrate that KLF5 is a key transcriptional regulator mediating muscle atrophy and that pharmacological intervention with Am80 is a potentially preventive treatment.
Journal Article
Osteocyte regulation of orthodontic force-mediated tooth movement via RANKL expression
2017
Orthodontic tooth movement is achieved by the remodeling of the alveolar bone surrounding roots of teeth. Upon the application of orthodontic force, osteoclastic bone resorption occurs on the compression side of alveolar bone, towards which the teeth are driven. However, the molecular basis for the regulatory mechanisms underlying alveolar bone remodeling has not been sufficiently elucidated. Osteoclastogenesis is regulated by receptor activator of nuclear factor-κB ligand (RANKL), which is postulated to be expressed by the cells surrounding the tooth roots. Here, we show that osteocytes are the critical source of RANKL in alveolar bone remodeling during orthodontic tooth movement. Using a newly established method for the isolation of periodontal tissue component cells from alveolar bone, we found that osteocytes expressed a much higher amount of RANKL than other cells did in periodontal tissue. The critical role of osteocyte-derived RANKL was confirmed by the reduction of orthodontic tooth movement in mice specifically lacking RANKL in osteocytes. Thus, we provide
in vivo
evidence for the key role of osteocyte-derived RANKL in alveolar bone remodeling, establishing a molecular basis for orthodontic force-mediated bone resorption.
Journal Article
Forceful mastication activates osteocytes and builds a stout jawbone
2019
Bone undergoes a constant reconstruction process of resorption and formation called bone remodeling, so that it can endure mechanical loading. During food ingestion, masticatory muscles generate the required masticatory force. The magnitude of applied masticatory force has long been believed to be closely correlated with the shape of the jawbone. However, both the mechanism underlying this correlation and evidence of causation remain largely to be determined. Here, we established a novel mouse model of increased mastication in which mice were fed with a hard diet (HD) to elicit greater masticatory force. A novel
in silico
computer simulation indicated that the masticatory load onto the jawbone leads to the typical bone profile seen in the individuals with strong masticatory force, which was confirmed by
in vivo
micro-computed tomography (micro-CT) analyses. Mechanistically, increased mastication induced Insulin–like growth factor (IGF)-1 and suppressed sclerostin in osteocytes. IGF-1 enhanced osteoblastogenesis of the cells derived from tendon. Together, these findings indicate that the osteocytes balance the cytokine expression upon the mechanical loading of increased mastication, in order to enhance bone formation. This bone formation leads to morphological change in the jawbone, so that the bone adapts to the mechanical environment to which it is exposed.
Journal Article
Emilin2 marks the target region for mesenchymal cell accumulation in bone regeneration
2024
Regeneration of injured tissue is dependent on stem/progenitor cells, which can undergo proliferation and maturation processes to replace the lost cells and extracellular matrix (ECM). Bone has a higher regenerative capacity than other tissues, with abundant mesenchymal progenitor cells in the bone marrow, periosteum, and surrounding muscle. However, the treatment of bone fractures is not always successful; a marked number of clinical case reports have described nonunion or delayed healing for various reasons. Supplementation of exogenous stem cells by stem cell therapy is anticipated to improve treatment outcomes; however, there are several drawbacks including the need for special devices for the expansion of stem cells outside the body, low rate of cell viability in the body after transplantation, and oncological complications. The use of endogenous stem/progenitor cells, instead of exogenous cells, would be a possible solution, but it is unclear how these cells migrate towards the injury site.
The chemoattractant capacity of the elastin microfibril interface located protein 2 (Emilin2), generated by macrophages, was identified by the migration assay and LC-MS/MS. The functions of Emilin2 in bone regeneration were further studied using Emilin2
mice.
The results show that in response to bone injury, there was an increase in Emilin2, an ECM protein. Produced by macrophages, Emilin2 exhibited chemoattractant properties towards mesenchymal cells. Emilin2
mice underwent delayed bone regeneration, with a decrease in mesenchymal cells after injury. Local administration of recombinant Emilin2 protein enhanced bone regeneration.
Emilin2 plays a crucial role in bone regeneration by increasing mesenchymal cells. Therefore, Emilin2 can be used for the treatment of bone fracture by recruiting endogenous progenitor cells.
Journal Article
Simultaneous augmentation of muscle and bone by locomomimetism through calcium-PGC-1α signaling
2022
Impaired locomotion has been extensively studied worldwide because those afflicted with it have a potential risk of becoming bedridden. Physical exercise at times can be an effective remedy for frailty, but exercise therapy cannot be applied in all clinical cases. Medication is safer than exercise, but there are no drugs that reinforce both muscle and bone when administered alone. Multiple medications increase the risk of adverse events; thus, there is a need for individual drugs targeting both tissues. To this end, we established a novel sequential drug screening system and identified an aminoindazole derivative, locamidazole (LAMZ), which promotes both myogenesis and osteoblastogenesis while suppressing osteoclastogenesis. Administration of this drug enhanced locomotor function, with muscle and bone significantly strengthened. Mechanistically, LAMZ induced Mef2c and PGC-1α in a calcium signaling-dependent manner. As this signaling is activated upon physical exercise, LAMZ mimics physical exercise. Thus, LAMZ is a promising therapeutic drug for locomotor diseases, including sarcopenia and osteoporosis.
Journal Article