Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
21 result(s) for "Opperman, Charles H"
Sort by:
The genome of the migratory nematode, Radopholus similis, reveals signatures of close association to the sedentary cyst nematodes
Radopholus similis, commonly known as the burrowing nematode, is an important pest of myriad crops and ornamentals including banana (Musa spp.) and Citrus spp. In order to characterize the potential role of putative effectors encoded by R. similis genes we compared predicted proteins from a draft R. similis genome with other plant-parasitic nematodes in order to define the suite of excreted/secreted proteins that enable it to function as a parasite and to ascertain the phylogenetic position of R. similis in the Tylenchida order. Identification and analysis of candidate genes encoding for key plant cell-wall degrading enzymes including GH5 cellulases, PL3 pectate lyases and GH28 polygalactouranase revealed a pattern of occurrence similar to other PPNs, although with closest phylogenetic associations to the sedentary cyst nematodes. We also observed the absence of a suite of effectors essential for feeding site formation in the cyst nematodes. Clustering of various orthologous genes shared by R. similis with other nematodes showed higher overlap with the cyst nematodes than with the root-knot or other migratory endoparasitic nematodes. The data presented here support the hypothesis that R. similis is evolutionarily closer to the cyst nematodes, however, differences in the effector repertoire delineate ancient divergence of parasitism, probably as a consequence of niche specialization. These similarities and differences further underscore distinct evolutionary relationships during the evolution of parasitism in this group of nematodes.
Disparate gain and loss of parasitic abilities among nematode lineages
Plant parasitism has arisen time and again in multiple phyla, including bacteria, fungi, insects and nematodes. In most of these organismal groups, the overwhelming diversity hampers a robust reconstruction of the origins and diversification patterns of this trophic lifestyle. Being a moderately diversified phylum with ≈ 4,100 plant parasites (15% of total biodiversity) subdivided over four independent lineages, nematodes constitute a major organismal group for which the genesis of plant parasitism could be mapped. Since substantial crop losses worldwide have been attributed to less than 1% of these plant parasites, research efforts are severely biased towards this minority. With the first molecular characterisation of numerous basal and supposedly harmless plant parasites as well as their non-parasitic relatives, we were able to generate a comprehensive molecular framework that allows for the reconstruction of trophic diversification for a complete phylum. In each lineage plant parasites reside in a single taxonomic grouping (family or order), and by taking the coverage of the next lower taxonomic level as a measure for representation, 50, 67, 100 and 85% of the known diversity was included. We revealed distinct gain and loss patterns with regard to plant parasitism per se as well as host exploitation strategies between these lineages. Our map of parasitic nematode biodiversity also revealed an unanticipated time reversal in which the two most ancient lineages showed the lowest level of ecological diversification and vice versa.
Sequence and genetic map of Meloidogyne hapla: A compact nematode genome for plant parasitism
We have established Meloidogyne hapla as a tractable model plant-parasitic nematode amenable to forward and reverse genetics, and we present a complete genome sequence. At 54 Mbp, M. hapla represents not only the smallest nematode genome yet completed, but also the smallest metazoan, and defines a platform to elucidate mechanisms of parasitism by what is the largest uncontrolled group of plant pathogens worldwide. The M. hapla genome encodes significantly fewer genes than does the free-living nematode Caenorhabditis elegans (most notably through a reduction of odorant receptors and other gene families), yet it has acquired horizontally from other kingdoms numerous genes suspected to be involved in adaptations to parasitism. In some cases, amplification and tandem duplication have occurred with genes suspected of being acquired horizontally and involved in parasitism of plants. Although M. hapla and C. elegans diverged >500 million years ago, many developmental and biochemical pathways, including those for dauer formation and RNAi, are conserved. Although overall genome organization is not conserved, there are areas of microsynteny that may suggest a primary biological function in nematodes for those genes in these areas. This sequence and map represent a wealth of biological information on both the nature of nematode parasitism of plants and its evolution.
Signatures of adaptation to plant parasitism in nematode genomes
Plant-parasitic nematodes cause considerable damage to global agriculture. The ability to parasitize plants is a derived character that appears to have independently emerged several times in the phylum Nematoda. Morphological convergence to feeding style has been observed, but whether this is emergent from molecular convergence is less obvious. To address this, we assess whether genomic signatures can be associated with plant parasitism by nematodes. In this review, we report genomic features and characteristics that appear to be common in plant-parasitic nematodes while absent or rare in animal parasites, predators or free-living species. Candidate horizontal acquisitions of parasitism genes have systematically been found in all plant-parasitic species investigated at the sequence level. Presence of peptides that mimic plant hormones also appears to be a trait of plant-parasitic species. Annotations of the few genomes of plant-parasitic nematodes available to date have revealed a set of apparently species-specific genes on every occasion. Effector genes, important for parasitism are frequently found among those species-specific genes, indicating poor overlap. Overall, nematodes appear to have developed convergent genomic solutions to adapt to plant parasitism.
Current Insights into Migratory Endoparasitism: Deciphering the Biology, Parasitism Mechanisms, and Management Strategies of Key Migratory Endoparasitic Phytonematodes
Despite their physiological differences, sedentary and migratory plant-parasitic nematodes (PPNs) share several commonalities. Functional characterization studies of key effectors and their targets identified in sedentary phytonematodes are broadly applied to migratory PPNs, generalizing parasitism mechanisms existing in distinct lifestyles. Despite their economic significance, host–pathogen interaction studies of migratory endoparasitic nematodes are limited; they have received little attention when compared to their sedentary counterparts. Because several migratory PPNs form disease complexes with other plant-pathogens, it is important to understand multiple factors regulating their feeding behavior and lifecycle. Here, we provide current insights into the biology, parasitism mechanism, and management strategies of the four-key migratory endoparasitic PPN genera, namely Pratylenchus, Radopholus, Ditylenchus, and Bursaphelenchus. Although this review focuses on these four genera, many facets of feeding mechanisms and management are common across all migratory PPNs and hence can be applied across a broad genera of migratory phytonematodes.
Profitability of yam production under farmer practice, abamectin treatment and banana paper techniques in Ghana
The productivity of yam in Ghana has been on a constant decline recently, mainly due to weather extremes and nematode infestations. This has significantly affected the profitability of yam production, with a resultant effect on the livelihoods of the thousands of yam income dependent households. Several techniques have been developed to improve the situation. This study purposes to estimate the profitability of yam production under the novel 'wrap and plant' technology of planting seed yam, in comparison to the traditional method in three agro-ecological zones in Ghana using 20 young and male-dominated randomly sampled yam farmers. The term 'wrap and plant' refers to a novel method of wrapping seed yam with abamectin treated banana paper (ABM) before planting in the soil. This is to prevent nematode migration into the seed yam during planting and also the new yam that develops. Each farmer was supported to farm on four demonstration plots of 144 mounds in all (six rows of six mounds, making 36 mounds per plot). The four demonstration plots/sites per farmer were randomly selected and the three treatments (ABP) banana paper with abamectin, (BP) banana paper without abamectin and the control, representing Farmer Practice (FP), were used with four replications per site for both dry and wet seasons. The profitability of their production under three yam planting techniques, abamectin-treated banana paper (ABP), untreated banana paper (BP), and farmer practice (FP) was determined using Benefit Cost Ratio (BCR) analysis. The study found that though the use of the new planting technology yielded significantly higher net-benefits compared to FP, they resulted in rather lower BCRs. Using FP led to 0.916 and 1.531 significantly higher BCR on the average, compared to ABP and BP, respectively. Although this study affirms FP as the most profitable planting technique, the new technology increased yam yields, but at higher costs. Farmers are willing to adopt this technology if the cost of the banana paper is further reduced. The findings of the study reinforce the importance of lowering the cost of adopting new planting techniques in order to make production under such techniques profitable for farmers.
Soybean cyst nematode culture collections and field populations from North Carolina and Missouri reveal high incidences of infection by viruses
Five viruses were previously discovered infecting soybean cyst nematodes (SCN; Heterodera glycines) from greenhouse cultures maintained in Illinois. In this study, the five viruses [ScNV, ScPV, ScRV, ScTV, and SbCNV-5] were detected within SCN greenhouse and field populations from North Carolina (NC) and Missouri (MO). The prevalence and titers of viruses in SCN from 43 greenhouse cultures and 25 field populations were analyzed using qRT-PCR. Viral titers within SCN greenhouse cultures were similar throughout juvenile development, and the presence of viral anti-genomic RNAs within egg, second-stage juvenile (J2), and pooled J3 and J4 stages suggests active viral replication within the nematode. Viruses were found at similar or lower levels within field populations of SCN compared with greenhouse cultures of North Carolina populations. Five greenhouse cultures harbored all five known viruses whereas in most populations a mixture of fewer viruses was detected. In contrast, three greenhouse cultures of similar descent to one another did not possess any detectable viruses and primarily differed in location of the cultures (NC versus MO). Several of these SCN viruses were also detected in Heterodera trifolii (clover cyst) and Heterodera schachtii (beet cyst), but not the other cyst, root-knot, or reniform nematode species tested. Viruses were not detected within soybean host plant tissue. If nematode infection with viruses is truly more common than first considered, the potential influence on nematode biology, pathogenicity, ecology, and control warrants continued investigation.
An ovary transcriptome for all maturational stages of the striped bass (Morone saxatilis), a highly advanced perciform fish
Background The striped bass and its relatives (genus Morone ) are important fisheries and aquaculture species native to estuaries and rivers of the Atlantic coast and Gulf of Mexico in North America. To open avenues of gene expression research on reproduction and breeding of striped bass, we generated a collection of expressed sequence tags (ESTs) from a complementary DNA (cDNA) library representative of their ovarian transcriptome. Results Sequences of a total of 230,151 ESTs (51,259,448 bp) were acquired by Roche 454 pyrosequencing of cDNA pooled from ovarian tissues obtained at all stages of oocyte growth, at ovulation (eggs), and during preovulatory atresia. Quality filtering of ESTs allowed assembly of 11,208 high-quality contigs ≥ 100 bp, including 2,984 contigs 500 bp or longer (average length 895 bp). Blastx comparisons revealed 5,482 gene orthologues (E-value < 10 -3 ), of which 4,120 (36.7% of total contigs) were annotated with Gene Ontology terms (E-value < 10 -6 ). There were 5,726 remaining unknown unique sequences (51.1% of total contigs). All of the high-quality EST sequences are available in the National Center for Biotechnology Information (NCBI) Short Read Archive (GenBank: SRX007394). Informative contigs were considered to be abundant if they were assembled from groups of ESTs comprising ≥ 0.15% of the total short read sequences (≥ 345 reads/contig). Approximately 52.5% of these abundant contigs were predicted to have predominant ovary expression through digital differential display in silico comparisons to zebrafish ( Danio rerio ) UniGene orthologues. Over 1,300 Gene Ontology terms from Biological Process classes of Reproduction, Reproductive process, and Developmental process were assigned to this collection of annotated contigs. Conclusions This first large reference sequence database available for the ecologically and economically important temperate basses (genus Morone ) provides a foundation for gene expression studies in these species. The predicted predominance of ovary gene expression and assignment of directly relevant Gene Ontology classes suggests a powerful utility of this dataset for analysis of ovarian gene expression related to fundamental questions of oogenesis. Additionally, a high definition Agilent 60-mer oligo ovary 'UniClone' microarray with 8 × 15,000 probe format has been designed based on this striped bass transcriptome (eArray Group: Striper Group, Design ID: 029004).
Development of abamectin loaded lignocellulosic matrices for the controlled release of nematicide for crop protection
Poor mobility of abamectin (Abm) in soil compromises its nematicide efficacy against nematode infestation. In the present work, four lignocellulosic materials (abaca, banana, softwood and hardwood) were fabricated into a handsheet matrix and characterized for loading and controlled release of Abm in a field-deployable matrix. The physical and chemical properties of different lignocellulosic matrices affected its function as a substrate for Abm loading as well as its ability to wrap around the plant seedlings during application. Incorporating Abm into lignocellulosic matrices by physisorption resulted in active matrices with distinct release rates for Abm. The rate of release is shown to be dependent on the matrix’s chemical compositions of cellulose, hemicellulose and lignin and the corresponding distribution of each component within the matrix. The higher lignin content (ca. 10.2 %) in the bulk of lignocellulosic matrix, e.g. mechanical-pulped banana matrix, enabled the slow and sustained release of loaded Abm; providing an efficacious crop protection around the growing tomato seedlings in the root knot nematode-infected soil. Conversely, the decreased lignin content (ca. 3.4 or 4.8 %) in other lignocellulosic matrices due to kraft-pulping and bleaching led to a relative quick release of loaded Abm thus compromising the long-term delivery of Abm to the growing plant root.
A Sequence-Anchored Linkage Map of the Plant–Parasitic Nematode Meloidogyne hapla Reveals Exceptionally High Genome-Wide Recombination
Root-knot nematodes (Meloidogyne spp.) cause major yield losses to many of the world’s crops, but efforts to understand how these pests recognize and interact with their hosts have been hampered by a lack of genetic resources. Starting with progeny of a cross between inbred strains (VW8 and VW9) of Meloidogyne hapla that differed in host range and behavioral traits, we exploited the novel, facultative meiotic parthenogenic reproductive mode of this species to produce a genetic linkage map. Molecular markers were derived from SNPs identified between the sequenced and annotated VW9 genome and de novo sequence of VW8. Genotypes were assessed in 183 F2 lines. The colinearity of the genetic and physical maps supported the veracity of both. Analysis of local crossover intervals revealed that the average recombination rate is exceptionally high compared with that in other metazoans. In addition, F2 lines are largely homozygous for markers flanking crossover points, and thus resemble recombinant inbred lines. We suggest that the unusually high recombination rate may be an adaptation to generate within-population genetic diversity in this organism. This work presents the most comprehensive linkage map of a parasitic nematode to date and, together with genomic and transcript sequence resources, empowers M. hapla as a tractable model. Alongside the molecular map, these progeny lines can be used for analyses of genome organization and the inheritance of phenotypic traits that have key functions in modulating parasitism, behavior, and survival and for the eventual identification of the responsible genes.