Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
25 result(s) for "Ortori, Catherine A."
Sort by:
Inclusion of Medium-Chain Triglyceride in Lipid-Based Formulation of Cannabidiol Facilitates Micellar Solubilization In Vitro, but In Vivo Performance Remains Superior with Pure Sesame Oil Vehicle
Oral sesame oil-based formulation facilitates the delivery of poorly water-soluble drug cannabidiol (CBD) to the lymphatic system and blood circulation. However, this natural oil-based formulation also leads to considerable variability in absorption of CBD. In this work, the performance of lipid-based formulations with the addition of medium-chain triglyceride (MCT) or surfactants to the sesame oil vehicle has been tested in vitro and in vivo using CBD as a model drug. The in vitro lipolysis has shown that addition of the MCT leads to a higher distribution of CBD into the micellar phase. Further addition of surfactants to MCT-containing formulations did not improve distribution of the drug into the micellar phase. In vivo, formulations containing MCT led to lower or similar concentrations of CBD in serum, lymph and MLNs, but with reduced variability. MCT improves the emulsification and micellar solubilization of CBD, but surfactants did not facilitate further the rate and extent of lipolysis. Even though addition of MCT reduces the variability, the in vivo performance for the extent of both lymphatic transport and systemic bioavailability remains superior with a pure natural oil vehicle.
Characterisation of two quorum sensing systems in the endophytic Serratia plymuthica strain G3: differential control of motility and biofilm formation according to life-style
N-acylhomoserine lactone (AHL)-based quorum sensing (QS) systems have been described in many plant-associated Gram-negative bacteria to control certain beneficial phenotypic traits, such as production of biocontrol factors and plant growth promotion. However, the role of AHL-mediated signalling in the endophytic strains of plant-associated Serratia is still poorly understood. An endophytic Serratia sp. G3 with biocontrol potential and high levels of AHL signal production was isolated from the stems of wheat and the role of QS in this isolate was determined. Strain G3 classified as Serratia plymuthica based on 16S rRNA was subjected to phylogenetic analysis. Using primers to conserved sequences of luxIR homologues from the Serratia genus, splIR and spsIR from the chromosome of strain G3 were cloned and sequenced. AHL profiles from strain G3 and Escherichia coli DH5α expressing splI or spsI from recombinant plasmids were identified by liquid chromatography-tandem mass spectrometry. This revealed that the most abundant AHL signals produced by SplI in E. coli were N-3-oxo-hexanoylhomoserine lactone (3-oxo-C6-HSL), N-3-oxo-heptanoylhomoserine lactone (3-oxo-C7-HSL), N-3-hydroxy-hexanoylhomoserine lactone (3-hydroxy-C6-HSL), N-hexanoylhomoserine lactone (C6-HSL), and N-heptanoyl homoserine lactone (C7-HSL); whereas SpsI was primarily responsible for the synthesis of N-butyrylhomoserine lactone (C4-HSL) and N-pentanoylhomoserine lactone (C5-HSL). Furthermore, a quorum quenching analysis by heterologous expression of the Bacillus A24 AiiA lactonase in strain G3 enabled the identification of the AHL-regulated biocontrol-related traits. Depletion of AHLs with this lactonase resulted in altered adhesion and biofilm formation using a microtiter plate assay and flow cells coupled with confocal laser scanning microscopy respectively. This was different from the closely related S. plymuthica strains HRO-C48 and RVH1, where biofilm formation for both strains is AHL-independent. In addition, QS in G3 positively regulated antifungal activity, production of exoenzymes, but negatively regulated production of indol-3-acetic acid (IAA), which is in agreement with previous reports in strain HRO-C48. However, in contrast to HRO-C48, swimming motility was not controlled by AHL-mediated QS. This is the first report of the characterisation of two AHL-based quorum sensing systems in the same isolate of the genus Serratia. Our results show that the QS network is involved in the global regulation of biocontrol-related traits in the endophytic strain G3. However, although free-living and endophytic S. plymuthica share some conservation on QS phenotypic regulation, the control of motility and biofilm formation seems to be strain-specific and possible linked to the life-style of this organism.
Sustained translational repression by eIF2α-P mediates prion neurodegeneration
Accumulation of prion protein during prion replication causes persistent translational repression of global protein synthesis, which is mediated by eIF2α-P and is associated with synaptic failure and neuronal loss in prion-diseased mice; promoting translational recovery in hippocampi of prion-infected mice is neuroprotective. Fine-tuning protein synthesis in prion disease Despite extensive research, the mechanisms leading to neuronal loss in neurodegenerative disease are still little understood, and no treatments or promising treatment strategies exist. Using prion-diseased mice as a model, this study demonstrates that the accumulation of misfolded prion protein during prion replication causes persistent translational repression of global protein synthesis. This is mediated by eIF2α-P and is associated with synaptic failure and neuronal loss in prion-diseased mice. Promoting translational recovery in the hippocampi of prion-infected mice is neuroprotective, suggesting that a generic approach involving the fine-tuning of protein synthesis may be worth pursuing in prion diseases, and perhaps in other neurodegenerative disorders involving protein misfolding. The mechanisms leading to neuronal death in neurodegenerative disease are poorly understood. Many of these disorders, including Alzheimer’s, Parkinson’s and prion diseases, are associated with the accumulation of misfolded disease-specific proteins. The unfolded protein response is a protective cellular mechanism triggered by rising levels of misfolded proteins. One arm of this pathway results in the transient shutdown of protein translation, through phosphorylation of the α-subunit of eukaryotic translation initiation factor, eIF2. Activation of the unfolded protein response and/or increased eIF2α-P levels are seen in patients with Alzheimer’s, Parkinson’s and prion diseases 1 , 2 , 3 , 4 , but how this links to neurodegeneration is unknown. Here we show that accumulation of prion protein during prion replication causes persistent translational repression of global protein synthesis by eIF2α-P, associated with synaptic failure and neuronal loss in prion-diseased mice. Further, we show that promoting translational recovery in hippocampi of prion-infected mice is neuroprotective. Overexpression of GADD34, a specific eIF2α-P phosphatase, as well as reduction of levels of prion protein by lentivirally mediated RNA interference, reduced eIF2α-P levels. As a result, both approaches restored vital translation rates during prion disease, rescuing synaptic deficits and neuronal loss, thereby significantly increasing survival. In contrast, salubrinal, an inhibitor of eIF2α-P dephosphorylation 5 , increased eIF2α-P levels, exacerbating neurotoxicity and significantly reducing survival in prion-diseased mice. Given the prevalence of protein misfolding and activation of the unfolded protein response in several neurodegenerative diseases, our results suggest that manipulation of common pathways such as translational control, rather than disease-specific approaches, may lead to new therapies preventing synaptic failure and neuronal loss across the spectrum of these disorders.
Integrated Metabolomics and Transcriptomics Using an Optimised Dual Extraction Process to Study Human Brain Cancer Cells and Tissues
The integration of untargeted metabolomics and transcriptomics from the same population of cells or tissue enhances the confidence in the identified metabolic pathways and understanding of the enzyme–metabolite relationship. Here, we optimised a simultaneous extraction method of metabolites/lipids and RNA from ependymoma cells (BXD-1425). Relative to established RNA (mirVana kit) or metabolite (sequential solvent addition and shaking) single extraction methods, four dual-extraction techniques were evaluated and compared (methanol:water:chloroform ratios): cryomill/mirVana (1:1:2); cryomill-wash/Econospin (5:1:2); rotation/phenol-chloroform (9:10:1); Sequential/mirVana (1:1:3). All methods extracted the same metabolites, yet rotation/phenol-chloroform did not extract lipids. Cryomill/mirVana and sequential/mirVana recovered the highest amounts of RNA, at 70 and 68% of that recovered with mirVana kit alone. sequential/mirVana, involving RNA extraction from the interphase of our established sequential solvent addition and shaking metabolomics-lipidomics extraction method, was the most efficient approach overall. Sequential/mirVana was applied to study a) the biological effect caused by acute serum starvation in BXD-1425 cells and b) primary ependymoma tumour tissue. We found (a) 64 differentially abundant metabolites and 28 differentially expressed metabolic genes, discovering four gene-metabolite interactions, and (b) all metabolites and 62% lipids were above the limit of detection, and RNA yield was sufficient for transcriptomics, in just 10 mg of tissue.
Anti-biofilm efficacy of a medieval treatment for bacterial infection requires the combination of multiple ingredients
Novel antimicrobials are urgently needed to combat drug-resistant bacteria and to overcome the inherent difficulties in treating biofilm-associated infections. Studying plants and other natural materials used in historical infection remedies may enable further discoveries to help fill the antibiotic discovery gap. We previously reconstructed a 1,000-year-old remedy containing onion, garlic, wine, and bile salts, known as ‘Bald’s eyesalve’, and showed it had promising antibacterial activity. In this current paper, we have found this bactericidal activity extends to a range of Gram-negative and Gram-positive wound pathogens in planktonic culture and, crucially, that this activity is maintained against Acinetobacter baumannii, Stenotrophomonas maltophilia, Staphylococcus aureus , Staphylococcus epidermidis and Streptococcus pyogenes in a soft-tissue wound biofilm model. While the presence of garlic in the mixture can explain the activity against planktonic cultures, garlic has no activity against biofilms. We have found the potent anti-biofilm activity of Bald’s eyesalve cannot be attributed to a single ingredient and requires the combination of all ingredients to achieve full activity. Our work highlights the need to explore not only single compounds but also mixtures of natural products for treating biofilm infections and underlines the importance of working with biofilm models when exploring natural products for the anti-biofilm pipeline.
A novel nucleoside rescue metabolic pathway may be responsible for therapeutic effect of orally administered cordycepin
Although adenosine and its analogues have been assessed in the past as potential drug candidates due to the important role of adenosine in physiology, only little is known about their absorption following oral administration. In this work, we have studied the oral absorption and disposition pathways of cordycepin, an adenosine analogue. In vitro biopharmaceutical properties and in vivo oral absorption and disposition of cordycepin were assessed in rats. Despite the fact that numerous studies showed efficacy following oral dosing of cordycepin, we found that intact cordycepin was not absorbed following oral administration to rats. However, 3′-deoxyinosine, a metabolite of cordycepin previously considered to be inactive, was absorbed into the systemic blood circulation. Further investigation was performed to study the conversion of 3′-deoxyinosine to cordycepin 5′-triphosphate in vitro using macrophage-like RAW264.7 cells. It demonstrated that cordycepin 5′-triphosphate, the active metabolite of cordycepin, can be formed not only from cordycepin, but also from 3′-deoxyinosine. The novel nucleoside rescue metabolic pathway proposed in this study could be responsible for therapeutic effects of adenosine and other analogues of adenosine following oral administration. These findings may have importance in understanding the physiology and pathophysiology associated with adenosine, as well as drug discovery and development utilising adenosine analogues.