Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
16 result(s) for "Ou, Liling"
Sort by:
Biocompatible nucleus-targeted graphene quantum dots for selective killing of cancer cells via DNA damage
Graphene quantum dots (GQDs) are nano-sized graphene slices. With their small size, lamellar and aromatic-ring structure, GQDs tend to enter into the cell nucleus and interfere with DNA activity. Thus, GQD alone is expected to be an anticancer reagent. Herein, we developed GQDs that suppress the growth of tumor by selectively damaging the DNA of cancer cells. The amine-functionalized GQDs were modified with nucleus targeting TAT peptides (TAT-NGs) and further grafted with cancer-cell-targeting folic acid (FA) modified PEG via disulfide linkage (FAPEG-TNGs). The resulting FAPEG-TNGs exhibited good biocompatibility, nucleus uptake, and cancer cell targeting. They adsorb on DNA via the π–π and electrostatic interactions, which induce the DNA damage, the upregulation of the cell apoptosis related proteins, and the suppression of cancer cell growth, ultimately. This work presents a rational design of GQDs that induce the DNA damage to realize high therapeutic performance, leading to a distinct chemotherapy strategy for targeted tumor therapy.Qi et al. develop nucleus targeting graphene quantum dots (GQDs) by modifying amine-functionalised GQDs with nucleus targeting TAT peptides. The resulting functionalised GQDs exhibit good biocompatibility, nucleus uptake, and cancer cell targeting. They can suppress growth of cancer cells by selectively inducing DNA damage.
Oxygen content-related DNA damage of graphene oxide on human retinal pigment epithelium cells
Arguments regarding the biocompatibility of graphene-based materials (GBMs) have never ceased. Particularly, the genotoxicity (e.g., DNA damage) of GBMs has been considered the greatest risk to healthy cells. Detailed genotoxicity studies of GBMs are necessary and essential. Herein, we present our recent studies on the genotoxicity of most widely used GBMs such as graphene oxide (GO) and the chemically reduced graphene oxide (RGO) toward human retinal pigment epithelium (RPE) cells. The genotoxicity of GO and RGOs against ARPE-19 (a typical RPE cell line) cells was investigated using the alkaline comet assay, the expression level of phosphorylated p53 determined via Western blots, and the release level of reactive oxygen species (ROS). Our results suggested that both GO and RGOs induced ROS-dependent DNA damage. However, the DNA damage was enhanced following the reduction of the saturated C–O bonds in GO, suggesting that surface oxygen-containing groups played essential roles in the reduced genotoxicity of graphene and had the potential possibility to reduce the toxicity of GBMs via chemical modification.
Utilization of Nitrogen-Doped Graphene Quantum Dots to Neutralize ROS and Modulate Intracellular Antioxidant Pathways to Improve Dry Eye Disease Therapy
Patients afflicted with dry eye disease (DED) experience significant discomfort. The underlying cause of DED is the excessive accumulation of ROS on the ocular surface. Here, we investigated the nitrogen doped-graphene quantum dots (NGQDs), known for their ROS-scavenging capabilities, as a treatment for DED. NGQDs were prepared by using citric acid and urea as precursors through hydrothermal method. The antioxidant abilities of NGQDs were evaluated through: scavenging the ROS both extracellular and intracellular, regulating the nuclear factor-erythroid 2-related factor (Nrf2) antioxidant pathway of human corneal epithelial cells (HCECs) and their transcription of inflammation related genes. Furthermore, NGQDs were modified by Arg-Gly-Asp-Ser (RGDS) peptides to obtain RGDS@NGQDs. , both the NGQDs and RGDS@NGQDs were suspended in 0.1% Pluronic F127 (w/v) and delivered as eye drops in the scopolamine hydrobromide-induced DED mouse model. Preclinical efficacy was compared to the healthy and DPBS treated DED mice. These NGQDs demonstrated pronounced antioxidant properties, efficiently neutralizing free radicals and activating the intracellular Nrf2 pathway. In vitro studies revealed that treatment of H O -exposed HCECs with NGQDs induced a preservation in cell viability. Additionally, there was a reduction in the transcription of inflammation-associated genes. To prolong the corneal residence time of NGQDs, they were further modified with RGDS peptides and suspended in 0.1% Pluronic F127 (w/v) to create RGDS@NGQDs F127 eye drops. RGDS@NGQDs exhibited superior intracellular antioxidant activity even at low concentrations (10 μg/mL). Subsequent in vivo studies revealed that RGDS@NGQDs F127 eye drops notably mitigated the symptoms of DED mouse model, primarily by reducing ocular ROS levels. Our findings underscore the enhanced antioxidant benefits achieved by modifying GQDs through nitrogen doping and RGDS peptide tethering. Importantly, in a mouse model, our novel eye drops formulation effectively ameliorated DED symptoms, thereby representing a novel therapeutic pathway for DED management.
The ratio of non-high-density lipoprotein cholesterol to high-density lipoprotein cholesterol is associated with diabetic kidney disease: A cross-sectional study
Non-High-Density Lipoprotein Cholesterol to High-Density Lipoprotein Cholesterol Ratio (NHHR) is a significant indicator of atherosclerosis. However, its association with diabetic kidney disease (DKD) remains unclear. This study aims to explore the relationship between NHHR and the prevalence of DKD among the U.S. adults using data from the National Health and Nutrition Examination Survey (NHANES) spanning 1999 to 2020. Participants were selected based on the stringent inclusion and exclusion criteria. We utilized single-factor analysis, multivariate logistic regression, and smooth curve fitting to investigate the relationship between NHHR and DKD. Our study included 8,329 diabetic individuals, who were categorized into DKD and non-DKD groups based on the presence or absence of kidney damage. A significant difference in NHHR was observed between these groups. After adjusting for potential confounders, we found that NHHR was positively associated with the prevalence of DKD. Specifically, each one-unit increase in NHHR corresponded to a 6% rise in the prevalence of DKD, with this association remaining significant across stratified NHHR values. Threshold effect analysis revealed an inflection point at an NHHR of 1.75, beyond this point, each unit increase in NHHR was associated with a 7% increase in the prevalence of DKD. Subgroup analysis confirmed the robustness of these findings. Our study demonstrates a significant correlation between NHHR and DKD prevalence, suggesting that monitoring NHHR could be an effective strategy for reducing DKD prevalence.
Efficacy and safety of intradialytic exercise in haemodialysis patients: a systematic review and meta-analysis
ObjectiveTo assess the efficacy and safety of intradialytic exercise for haemodialysis patients.DesignSystematic review and meta-analysis.Data sourcesDatabases, including PubMed, Embase, the Cochrane Library, China Biology Medicine and China National Knowledge Infrastructure, were screened from inception to March 2017.Eligibility criteriaRandomised controlled trials (RCTs) aimed at comparing the efficacy and safety of intradialytic exercise versus no exercise in adult patients on haemodialysis for at least 3 months. A minimum exercise programme period of 8 weeks.Data extractionStudy characteristics and study quality domains were reviewed. Studies were selected, and data extracted by two reviewers.Data analysisThe pooled risk ratios and mean differences (MDs) with 95% CIs for dichotomous data and continuous data were calculated, respectively.ResultsA total of 27 RCTs involving 1215 subjects were analysed. Compared with no exercise, intradialytic exercise increased dialysis adequacy (Kt/V) (MD 0.07, 95% CI 0.01 to 0.12, p=0.02) and maximum volume of oxygen that the body can use during physical exertion peak oxygen consumption (MD 4.11, 95% CI 2.94 to 5.27, p<0.0001), alleviated depression standardised mean difference (−1.16, 95% CI −1.86 to –0.45, p=0.001) and improved physical component summary-short form-36 (SF-36) level (MD 7.72, 95% CI 1.93 to 13.51, p=0.009). Also, intradialytic exercise could significantly reduce systolic blood pressure (MD −4.87, 95% CI −9.20 to –0.55, p=0.03) as well as diastolic blood pressure (MD −4.11, 95% CI −6.50 to –1.72, p=0.0007). However, intradialytic exercise could not improve mental component summary-SF-36 level (MD 3.05, 95% CI −1.47 to 7.57, p=0.19). There was no difference in the incidence of adverse events between the intradialytic exercise and control groups.ConclusionsIntradialytic exercise resulted in benefits in terms of improving haemodialysis adequacy, exercise capacity, depression and quality of life for haemodialysis.
Application of conditionally replicating adenoviruses in tumor early diagnosis technology, gene-radiation therapy and chemotherapy
Conditionally replicating adenoviruses ( CRAds ), or known as replication-selective adenoviruses, were discovered as oncolytic gene vectors several years ago. They have a strong ability of scavenging tumor and lesser toxicity to normal tissue. CRAds not only have a tumor-killing ability but also can combine with gene therapy, radiotherapy, and chemotherapy to induce tumor cell apoptosis. In this paper, we review the structure of CRAds and CRAd vectors and summarize the current application of CRAds in tumor detection as well as in radiotherapy and suicide gene-mediating chemotherapy. We also propose further research strategies that can improve the application value of CRAds, including enhancing tumor destruction effect, further reducing toxic effect, reducing immunogenicity, constructing CRAds that can target tumor stem cells, and trying to use mesenchymal stem cells ( MSCs ) as the carriers for oncolytic adenoviruses. As their importance to cancer diagnosis, gene-radiation, and chemotherapy, CRAds may play a considerable role in clinical diagnosis and various cancer treatments in the future.
Chidamide in relapsed or refractory peripheral T cell lymphoma: a multicenter real-world study in China
The efficacy and safety of chidamide, a new subtype-selective histone deacetylase (HDAC) inhibitor, have been demonstrated in a pivotal phase II clinical trial, and chidamide has been approved by the China Food and Drug Administration (CFDA) as a treatment for relapsed or refractory peripheral T cell lymphoma (PTCL). This study sought to further evaluate the real-world utilization of chidamide in 383 relapsed or refractory PTCL patients from April 2015 to February 2016 in mainland China. For patients receiving chidamide monotherapy ( n  = 256), the overall response rate (ORR) and disease control rate (DCR) were 39.06 and 64.45%, respectively. The ORR and DCR were 51.18 and 74.02%, respectively, for patients receiving chidamide combined with chemotherapy ( n  = 127). For patients receiving chidamide monotherapy and chidamide combined with chemotherapy, the median progression-free survival (PFS) was 129 (95% CI 82 to 194) days for the monotherapy group and 152 (95% CI 93 to 201) days for the combined therapy group ( P  = 0.3266). Most adverse events (AEs) were of grade 1 to 2. AEs of grade 3 or higher that occurred in ≥5% of patients receiving chidamide monotherapy included thrombocytopenia (10.2%) and neutropenia (6.2%). For patients receiving chidamide combined with chemotherapy, grade 3 to 4 AEs that occurred in ≥5% of patients included thrombocytopenia (18.1%), neutropenia (12.6%), anemia (7.1%), and fatigue (5.5%). This large real-world study demonstrates that chidamide has a favorable efficacy and an acceptable safety profile for refractory and relapsed PTCL patients. Chidamide combined with chemotherapy may be a new treatment choice for refractory and relapsed PTCL patients but requires further investigation.
Silencing of DLGAP5 by siRNA Significantly Inhibits the Proliferation and Invasion of Hepatocellular Carcinoma Cells
The dysregulation of oncogenes and tumor suppressor genes plays an important role in many cancers, including hepatocellular carcinoma (HCC), which is one of the most common cancers in the world. In a previous microarray experiment, we found that DLGAP5 is overexpressed in HCCs. However, whether the up-regulation of DLGAP5 contributes to hepatocarcinogenesis remains unclear. In this study, we showed that DLGAP5 was significantly up-regulated in 76.4% (168 of 220) of the analyzed HCC specimens when compared with adjacent liver tissue. DLGAP5 overexpression was evident in 25% (22 of 88) of the HCC specimens without AFP expression, suggesting that DLGAP5 may be a novel biomarker for HCC pathogenesis. The silencing of DLGAP5 gene expression by RNA interference significantly suppressed cell growth, migration and colony formation in vitro. The expression level of DLGAP5 was also found to be related to the methylation level of its promoter in the HCC specimens. Taken together, these data suggest that the expression of DLGAP5 is regulated by methylation and that the up-regulation of DLGAP5 contributes to HCC tumorigenesis by promoting cell proliferation.
Incidence trends of kidney cancer in China from 1990 to 2019: A joinpoint and age-period-cohort analysis
Occupational carcinogens, smoking, and obesity are believed to be the main causing agents of kidney cancer. China is undergoing rapid industrialization, and hence the people's lifestyles have witnessed tremendous changes. However, the trend of kidney cancer incidence during the late 20 and early 21 centuries remains unexplored in China. Data from the Global Burden of Diseases (GBD; 2019) was retrieved for the incidence of kidney cancer from 1990 to 2019. The rates of disease average annual percentage changes (AAPC) were assessed using joinpoint regression analysis. Age-period-cohort (APC) model was used to assess age, period, and cohort effects on the incidence of the disease simultaneously. An increase in age-standardized incidence rates (ASIR) of kidney cancer was observed from 1990 to 2019 in total residents (1.33 - 4.24), men (1.56 - 6.15), and women (1.11 - 2.31) per 100,000 population suggesting a more obvious increase in males than in females. A consistent increase in age effects was observed in all age groups, especially in males. On the other hand, the 70 - 74 age group in females showed greater age effects. In addition, the period effects analysis showed that the incidence of kidney cancer increased with time. Moreover, the analysis of cohort effects showed a decrease in the disease in birth cohorts, especially before 1940. The incidence of kidney cancer is increasing rapidly in China. The kidney cancer burden will rise in the next decades due to population aging, environmental pollution, occupation, food safety, and so on. Results of this study suggest that more etiological studies should be performed to identify the driving factors for kidney cancer trends, and appropriate preventive measures should be implemented for the age-, period-, and cohort-related factors in the population.