Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
697 result(s) for "PALMA, GIUSEPPE"
Sort by:
Neurological and cognitive sequelae of Covid-19: a four month follow-up
Central and peripheral nervous system involvement during acute COVID-19 is well known. Although many patients report some subjective symptoms months after the infection, the exact incidence of neurological and cognitive sequelae of COVID-19 remains to be determined. The aim of this study is to investigate if objective neurological or cognitive impairment is detectable four months after SARS-CoV-2 infection, in a group of patients who had mild–moderate COVID-19. A cohort of 120 health care workers previously affected by COVID-19 was examined 4 months after the diagnosis by means of neurological and extensive cognitive evaluation and compared to a group of 30 health care workers who did not have COVID-19 and were similar for age and co morbidities. At 4 month follow-up, 118/120 COVID-19 cases had normal neurological examination, two patients had neurological deficits. COVID-19 patients did not show general cognitive impairment at MMSE. In COVID-19 cases the number of impaired neuropsychological tests was not significantly different from non COVID-19 cases (mean 1.69 and 1 respectively, Mann–Whitney p = n.s.), as well as all the mean tests’ scores. Anxiety, stress and depression scores resulted to be significantly higher in COVID-19 than in non COVID-19 cases. The results do not support the presence of neurological deficits or cognitive impairment in this selected population of mild–moderate COVID-19 patients four months after the diagnosis. Severe emotional disorders in patients who had COVID-19 in the past are confirmed.
Adipose Tissue Dysfunction and Obesity-Related Male Hypogonadism
Obesity is a chronic illness associated with several metabolic derangements and comorbidities (i.e., insulin resistance, leptin resistance, diabetes, etc.) and often leads to impaired testicular function and male subfertility. Several mechanisms may indeed negatively affect the hypothalamic–pituitary–gonadal health, such as higher testosterone conversion to estradiol by aromatase activity in the adipose tissue, increased ROS production, and the release of several endocrine molecules affecting the hypothalamus–pituitary–testis axis by both direct and indirect mechanisms. In addition, androgen deficiency could further accelerate adipose tissue expansion and therefore exacerbate obesity, which in turn enhances hypogonadism, thus inducing a vicious cycle. Based on these considerations, we propose an overview on the relationship of adipose tissue dysfunction and male hypogonadism, highlighting the main biological pathways involved and the current therapeutic options to counteract this condition.
Basic principles of biobanking: from biological samples to precision medicine for patients
The term “biobanking” is often misapplied to any collection of human biological materials (biospecimens) regardless of requirements related to ethical and legal issues or the standardization of different processes involved in tissue collection. A proper definition of biobanks is large collections of biospecimens linked to relevant personal and health information (health records, family history, lifestyle, genetic information) that are held predominantly for use in health and medical research. In addition, the International Organization for Standardization, in illustrating the requirements for biobanking (ISO 20387:2018), stresses the concept of biobanks being legal entities driving the process of acquisition and storage together with some or all of the activities related to collection, preparation, preservation, testing, analysing and distributing defined biological material as well as related information and data. In this review article, we aim to discuss the basic principles of biobanking, spanning from definitions to classification systems, standardization processes and documents, sustainability and ethical and legal requirements. We also deal with emerging specimens that are currently being generated and shaping the so-called next-generation biobanking, and we provide pragmatic examples of cancer-associated biobanking by discussing the process behind the construction of a biobank and the infrastructures supporting the implementation of biobanking in scientific research.
Adipose Tissue Inflammation and Pulmonary Dysfunction in Obesity
Obesity is a chronic disease caused by an excess of adipose tissue that may impair health by altering the functionality of various organs, including the lungs. Excessive deposition of fat in the abdominal area can lead to abnormal positioning of the diaphragm and consequent reduction in lung volume, leading to a heightened demand for ventilation and increased exposure to respiratory diseases, such as chronic obstructive pulmonary disease, asthma, and obstructive sleep apnoea. In addition to mechanical ventilatory constraints, excess fat and ectopic deposition in visceral depots can lead to adipose tissue dysfunction, which promotes metabolic disorders. An altered adipokine-secretion profile from dysfunctional adipose tissue in morbid obesity fosters systemic, low-grade inflammation, impairing pulmonary immune response and promoting airway hyperresponsiveness. A potential target of these adipokines could be the NLRP3 inflammasome, a critical component of the innate immune system, the harmful pro-inflammatory effect of which affects both adipose and lung tissue in obesity. In this review, we will investigate the crosstalk between adipose tissue and the lung in obesity, highlighting the main inflammatory mediators and novel therapeutic targets in preventing pulmonary dysfunction.
Spontaneous cancer remission after COVID-19: insights from the pandemic and their relevance for cancer treatment
Early in the COVID-19 pandemic, it emerged that the risk of severe outcomes was greater in patients with co-morbidities, including cancer. The huge effort undertaken to fight the pandemic, affects the management of cancer care, influencing their outcome. Despite the high fatality rate of COVID-19 disease in cancer patients, rare cases of temporary or prolonged clinical remission from cancers after SARS-CoV-2 infection have been reported. We have reviewed sixteen case reports of COVID-19 disease with spontaneous cancer reduction of progression. Fourteen cases of remission following viral infections and two after anti-SARS-CoV-2 vaccination. The immune response to COVID-19, may be implicated in both tumor regression, and progression. Specifically, we discuss potential mechanisms which include oncolytic and priming hypotheses, that may have contributed to the cancer regression in these cases and could be useful for future options in cancer treatment.
Can Beta-2-Adrenergic Pathway Be a New Target to Combat SARS-CoV-2 Hyperinflammatory Syndrome?—Lessons Learned From Cancer
SARS-CoV-2 infection is a new threat to global public health in the 21 century (2020), which has now rapidly spread around the globe causing severe pneumonia often linked to Acute Respiratory Distress Syndrome (ARDS) and hyperinflammatory syndrome. SARS-CoV-2 is highly contagious through saliva droplets. The structural analysis suggests that the virus enters human cells through the ligation of the spike protein to angiotensin-converting enzyme 2 (ACE ). The progression of Covid-19 has been divided into three main stages: stage I-viral response, stage II-pulmonary phase, and stage III-hyperinflammation phase. Once the patients enter stage III, it will likely need ventilation and it becomes difficult to manage. Thus, it will be of paramount importance to find therapies to prevent or slow down the progression of the disease toward stage III. The key event leading to hyperinflammation seems to be the activation of Th-17 immunity response and Cytokine storm. B -adrenergic receptors (B ARs) are expressed on airways and on all the immune cells such as macrophages, dendritic cells, B and T lymphocytes. Blocking (B AR) has been proven, also in clinical settings, to reduce Th-17 response and negatively modulate inflammatory cytokines including IL-6 while increasing IFN . Non-selective beta-blockers are currently used to treat several diseases and have been proven to reduce stress-induced inflammation and reduce anxiety. For these reasons, we speculate that targeting B AR in the early phase of Covid-19 might be beneficial to prevent hyperinflammation.
Inter-patient image registration algorithms to disentangle regional dose bioeffects
Radiation therapy (RT) technological advances call for a comprehensive reconsideration of the definition of dose features leading to radiation induced morbidity (RIM). In this context, the voxel-based approach (VBA) to dose distribution analysis in RT offers a radically new philosophy to evaluate local dose response patterns, as an alternative to dose-volume-histograms for identifying dose sensitive regions of normal tissue. The VBA relies on mapping patient dose distributions into a single reference case anatomy which serves as anchor for local dosimetric evaluations. The inter-patient elastic image registrations (EIRs) of the planning CTs provide the deformation fields necessary for the actual warp of dose distributions. In this study we assessed the impact of EIR on the VBA results in thoracic patients by identifying two state-of-the-art EIR algorithms (Demons and B-Spline). Our analysis demonstrated that both the EIR algorithms may be successfully used to highlight subregions with dose differences associated with RIM that substantially overlap. Furthermore, the inclusion for the first time of covariates within a dosimetric statistical model that faces the multiple comparison problem expands the potential of VBA, thus paving the way to a reliable voxel-based analysis of RIM in datasets with strong correlation of the outcome with non-dosimetric variables.
Polychlorinated biphenyls and risk of hepatocellular carcinoma in the population living in a highly polluted area in Italy
Polychlorinated biphenyls (PCBs) are human carcinogens, based on sufficient evidence for melanoma and limited evidence for non-Hodgkin lymphoma and breast cancer. Few data are available for liver cancer, although PCBs cause it in rats and determined liver damage in poisoned people. We investigated the association between PCB serum levels and hepatocellular carcinoma (HCC) with a case–control study in a PCB-polluted area in North Italy. We enrolled prospectively 102 HCC incident cases and 102 age and gender-matched hospital controls. Serum concentrations of 33 PCB congeners were determined by a gas chromatograph coupled to mass spectrometry. Of 102 HCC cases, 62 who had lost < 3 kg of body weight in past 3 years were included in the analysis (67.7% males, mean age 68 years). The odds ratio (OR) for HCC for 3rd compared to 1st tertile of PCB distribution was 1.76 (95% confidence interval 0.62–5.03) for total PCB, adjusting for socio-demographic variables and risk factors for HCC by logistic regression. For most PCB congeners, ORs > 1.5 or 2 were found, although the 95% CIs included the null value for almost all of them. This preliminary study suggests that PCBs might play a role in HCC development.
RESUME: Turning an SWI acquisition into a fast qMRI protocol
Susceptibility Weighted Imaging (SWI) is a common MRI technique that exploits the magnetic susceptibility differences between the tissues to provide valuable image contrasts, both in research and clinical contexts. However, despite its increased clinical use, SWI is not intrinsically suitable for quantitation purposes. Conversely, quantitative Magnetic Resonance Imaging (qMRI) provides a way to disentangle the sources of common MR image contrasts (e.g. proton density, T1, etc.) and to measure physical parameters intrinsically related to tissue microstructure. Unfortunately, the poor signal-to-noise ratio and resolution, coupled with the long imaging time of most qMRI strategies, have hindered the integration of quantitative imaging into clinical protocols. Here we present the RElaxometry and SUsceptibility Mapping Expedient (RESUME) to show that the standard acquisition leading to a clinical SWI dataset can be easily turned into a thorough qMRI protocol at the cost of a further 50% of the SWI scan time. The R1, [Formula: see text], proton density and magnetic susceptibility maps provided by the RESUME scheme alongside the SWI reconstruction exhibit high reproducibility and accuracy, and a submillimeter resolution is proven to be compatible with a total scan time of 7 minutes.