Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
22
result(s) for
"Pabel Steffen"
Sort by:
Detrimental proarrhythmogenic interaction of Ca2+/calmodulin-dependent protein kinase II and NaV1.8 in heart failure
2021
An interplay between Ca
2+
/calmodulin-dependent protein kinase IIδc (CaMKIIδc) and late Na
+
current (I
NaL
) is known to induce arrhythmias in the failing heart. Here, we elucidate the role of the sodium channel isoform Na
V
1.8 for CaMKIIδc-dependent proarrhythmia. In a CRISPR-Cas9-generated human iPSC-cardiomyocyte homozygous knock-out of Na
V
1.8, we demonstrate that Na
V
1.8 contributes to I
NaL
formation. In addition, we reveal a direct interaction between Na
V
1.8 and CaMKIIδc in cardiomyocytes isolated from patients with heart failure (HF). Using specific blockers of Na
V
1.8 and CaMKIIδc, we show that Na
V
1.8-driven I
NaL
is CaMKIIδc-dependent and that Na
V
1.8-inhibtion reduces diastolic SR-Ca
2+
leak in human failing cardiomyocytes. Moreover, increased mortality of CaMKIIδc-overexpressing HF mice is reduced when a Na
V
1.8 knock-out is introduced. Cellular and in vivo experiments reveal reduced ventricular arrhythmias without changes in HF progression. Our work therefore identifies a proarrhythmic CaMKIIδc downstream target which may constitute a prognostic and antiarrhythmic strategy.
In heart failure, increased CaMKII activity is decisively involved in arrhythmia formation. Here, the authors introduce the neuronal sodium channel Na
V
1.8 as a CaMKII downstream target as its specific knock-out reduces arrhythmias and improves survival in a CaMKII-overexpressing mouse model.
Journal Article
Empagliflozin inhibits Na+/H+ exchanger activity in human atrial cardiomyocytes
by
Lebek, Simon
,
Sossalla, Samuel T.
,
Riechel, Johannes
in
Antidiabetics
,
Biopsy
,
Cardiac arrhythmia
2020
Aims Recent clinical trials have proven gliflozins to be cardioprotective in diabetic and non‐diabetic patients. However, the underlying mechanisms are incompletely understood. A potential inhibition of cardiac Na+/H+ exchanger 1 (NHE1) has been suggested in animal models. We investigated the effect of empagliflozin on NHE1 activity in human atrial cardiomyocytes. Methods and results Expression of NHE1 was assessed in human atrial and ventricular tissue via western blotting. NHE activity was measured as the maximal slope of pH recovery after NH4+ pulse in isolated carboxy‐seminaphtarhodafluor 1 (SNARF1)‐acetoxymethylester‐loaded murine ventricular and human atrial cardiomyocytes. NHE1 is abundantly expressed in human atrial and ventricular tissue. Interestingly, compared with patients without heart failure (HF), atrial NHE1 expression was significantly increased in patients with HF with preserved ejection fraction and atrial fibrillation. The largest increase in atrial and ventricular NHE1 expression, however, was observed in patients with end‐stage HF undergoing heart transplantation. Importantly, acute exposure to empagliflozin (1 μmol/L, 10 min) significantly inhibited NHE activity to a similar extent in human atrial myocytes and mouse ventricular myocytes. This inhibition was also achieved by incubation with the well‐described selective NHE inhibitor cariporide (10 μmol/L, 10 min). Conclusions This is the first study systematically analysing NHE1 expression in human atrial and ventricular myocardium of HF patients. We show that empagliflozin inhibits NHE in human cardiomyocytes. The extent of NHE inhibition was comparable with cariporide and may potentially contribute to the improved outcome of patients in clinical trials.
Journal Article
Inhibition of NaV1.8 prevents atrial arrhythmogenesis in human and mice
2020
Pharmacologic approaches for the treatment of atrial arrhythmias are limited due to side effects and low efficacy. Thus, the identification of new antiarrhythmic targets is of clinical interest. Recent genome studies suggested an involvement of SCN10A sodium channels (NaV1.8) in atrial electrophysiology. This study investigated the role and involvement of NaV1.8 (SCN10A) in arrhythmia generation in the human atria and in mice lacking NaV1.8. NaV1.8 mRNA and protein were detected in human atrial myocardium at a significant higher level compared to ventricular myocardium. Expression of NaV1.8 and NaV1.5 did not differ between myocardium from patients with atrial fibrillation and sinus rhythm. To determine the electrophysiological role of NaV1.8, we investigated isolated human atrial cardiomyocytes from patients with sinus rhythm stimulated with isoproterenol. Inhibition of NaV1.8 by A-803467 or PF-01247324 showed no effects on the human atrial action potential. However, we found that NaV1.8 significantly contributes to late Na+ current and consequently to an increased proarrhythmogenic diastolic sarcoplasmic reticulum Ca2+ leak in human atrial cardiomyocytes. Selective pharmacological inhibition of NaV1.8 potently reduced late Na+ current, proarrhythmic diastolic Ca2+ release, delayed afterdepolarizations as well as spontaneous action potentials. These findings could be confirmed in murine atrial cardiomyocytes from wild-type mice and also compared to SCN10A−/− mice (genetic ablation of NaV1.8). Pharmacological NaV1.8 inhibition showed no effects in SCN10A−/− mice. Importantly, in vivo experiments in SCN10A−/− mice showed that genetic ablation of NaV1.8 protects against atrial fibrillation induction. This study demonstrates that NaV1.8 is expressed in the murine and human atria and contributes to late Na+ current generation and cellular arrhythmogenesis. Blocking NaV1.8 selectively counteracts this pathomechanism and protects against atrial arrhythmias. Thus, our translational study reveals a new selective therapeutic target for treating atrial arrhythmias.
Journal Article
Empagliflozin reduces Ca/calmodulin‐dependent kinase II activity in isolated ventricular cardiomyocytes
by
Wagemann, Olivia
,
Sossalla, Samuel T.
,
Hammer, Karin P.
in
Animals
,
Antidiabetics
,
Benzhydryl Compounds - pharmacology
2018
Aims The EMPA‐REG OUTCOME study showed reduced mortality and hospitalization due to heart failure (HF) in diabetic patients treated with empagliflozin. Overexpression and Ca2+‐dependent activation of Ca2+/calmodulin‐dependent kinase II (CaMKII) are hallmarks of HF, leading to contractile dysfunction and arrhythmias. We tested whether empagliflozin reduces CaMKII‐ activity and improves Ca2+‐handling in human and murine ventricular myocytes. Methods and results Myocytes from wild‐type mice, mice with transverse aortic constriction (TAC) as a model of HF, and human failing ventricular myocytes were exposed to empagliflozin (1 μmol/L) or vehicle. CaMKII activity was assessed by CaMKII–histone deacetylase pulldown assay. Ca2+ spark frequency (CaSpF) as a measure of sarcoplasmic reticulum (SR) Ca2+ leak was investigated by confocal microscopy. [Na+]i was measured using Na+/Ca2+‐exchanger (NCX) currents (whole‐cell patch clamp). Compared with vehicle, 24 h empagliflozin exposure of murine myocytes reduced CaMKII activity (1.6 ± 0.7 vs. 4.2 ± 0.9, P < 0.05, n = 10 mice), and also CaMKII‐dependent ryanodine receptor phosphorylation (0.8 ± 0.1 vs. 1.0 ± 0.1, P < 0.05, n = 11 mice), with similar results upon TAC. In murine myocytes, empagliflozin reduced CaSpF (TAC: 1.7 ± 0.3 vs. 2.5 ± 0.4 1/100 μm−1 s−1, P < 0.05, n = 4 mice) but increased SR Ca2+ load and Ca2+ transient amplitude. Importantly, empagliflozin also significantly reduced CaSpF in human failing ventricular myocytes (1 ± 0.2 vs. 3.3 ± 0.9, P < 0.05, n = 4 patients), while Ca2+ transient amplitude was increased (F/F0: 0.53 ± 0.05 vs. 0.36 ± 0.02, P < 0.05, n = 3 patients). In contrast, 30 min exposure with empagliflozin did not affect CaMKII activity nor Ca2+‐handling but significantly reduced [Na+]i. Conclusions We show for the first time that empagliflozin reduces CaMKII activity and CaMKII‐dependent SR Ca2+ leak. Reduced Ca2+ leak and improved Ca2+ transients may contribute to the beneficial effects of empagliflozin in HF.
Journal Article
Long-term effects of empagliflozin on excitation-contraction-coupling in human induced pluripotent stem cell cardiomyocytes
by
Hammer, Karin P
,
Mustroph Julian
,
Reetz Florian
in
Action potential
,
Antidiabetics
,
Calcium signalling
2020
The SGLT2 inhibitor empagliflozin improved cardiovascular outcomes in patients with diabetes. As the cardiac mechanisms remain elusive, we investigated the long-term effects (up to 2 months) of empagliflozin on excitation-contraction (EC)-coupling in human cardiomyocytes derived from induced pluripotent stem cells (iPSC-CM) in a blinded manner. IPSC from 3 donors, differentiated into pure iPSC-CM (4 differentiations), were treated with a clinically relevant concentration of empagliflozin (0.5 μmol/l) or vehicle control. Treatment, data acquisition, and analysis were conducted externally blinded. Epifluorescence microscopy measurements in iPSC-CM showed that empagliflozin has neutral effects on Ca2+ transient amplitude, diastolic Ca2+ levels, Ca2+ transient kinetics, or sarcoplasmic Ca2+ load after 2 weeks or 8 weeks of treatment. Confocal microscopy determining possible effects on proarrhythmogenic diastolic Ca2+ release events showed that in iPSC-CM, Ca2+ spark frequency and leak was not altered after chronic treatment with empagliflozin. Finally, in patch-clamp experiments, empagliflozin did not change action potential duration, amplitude, or resting membrane potential compared with vehicle control after long-term treatment. Next-generation RNA sequencing (NGS) and mapped transcriptome profiles of iPSC-CMs untreated and treated with empagliflozin for 8 weeks showed no differentially expressed EC-coupling genes. In line with NGS data, Western blots indicate that empagliflozin has negligible effects on key EC-coupling proteins. In this blinded study, direct treatment of iPSC-CM with empagliflozin for a clinically relevant duration of 2 months did not influence cardiomyocyte EC-coupling and electrophysiology. Therefore, it is likely that other mechanisms independent of cardiomyocyte EC-coupling are responsible for the beneficial treatment effect of empagliflozin.Key messagesThis blinded study investigated the clinically relevant long-term effects (up to 2 months) of empagliflozin on cardiomyocyte excitation-contraction (EC)-coupling.Human cardiomyocytes derived from induced pluripotent stem cells (iPSC-CM) were used to study a human model including a high repetition number of experiments.Empagliflozin has neutral effects on cardiomyocyte Ca2+ transients, sarcoplasmic Ca2+ load, and diastolic sarcoplasmic Ca2+ leak.In patch-clamp experiments, empagliflozin did not change the action potential.Next-generation RNA sequencing, mapped transcriptome profiles, and Western blots of iPSC-CM untreated and treated with empagliflozin showed no differentially expressed EC-coupling candidates.
Journal Article
Protocol for the Systematic Quantitative Ultrastructural Analysis of Mitochondria in Cardiac Tissue
by
Cheung, Wing-Hoi
,
Mendelsohn, Daniel H.
,
Brochhausen, Christoph
in
cardiomyocytes
,
electron microscopy
,
Force and energy
2025
Mitochondria play a crucial role in adapting to fluctuating energy demands, particularly in various heart diseases. In addition to functional analyses such as the measurement of ROS or ATP, analysis of mitochondrial ultrastructure can be used to draw further conclusions about their functions and effects in tissue. In this protocol, we introduce a set of measurements to compare the ultrastructural and functional characteristics of human left ventricular mitochondria, using transmission electron microscopy (TEM). Measured parameters included mean size in µm2, elongation, count, percental mitochondrial area in the measuring frame, and a conglomeration score. We also introduce a novel method of defining hydropic mitochondria as a comparable evaluation standard. With this cluster of measurement parameters, we aim to contribute a protocol for studying human mitochondrial morphology, distribution, and functionality.
Journal Article
Empagliflozin enhances human and murine cardiomyocyte glucose uptake by increased expression of GLUT1
2019
We compared the risk of acute coronary events in diabetic and non-diabetic persons with and without prior myocardial infarction (MI), stratified by age and sex. A Finnish MI-register study known as FINAMI recorded incident MIs and coronary deaths (n=6988) among people aged 45 to 74 years in four areas of Finland between 1993 and 2002. The population-based FINRISK surveys were used to estimate the numbers of persons with prior diabetes and prior MI in the population. Persons with diabetes but no prior MI and persons with prior MI but no diabetes had a markedly greater risk of a coronary event than persons without diabetes and without prior MI. The rate of recurrent MI among non-diabetic men with prior MI was higher than the incidence of first MI among diabetic men aged 45 to 54 years. The rate ratio was 2.14 (95% CI 1.40-3.27) among men aged 50. Among elderly men, diabetes conferred a higher risk than prior MI. Diabetic women had a similar risk of suffering a first MI as non-diabetic women with a prior MI had for suffering a recurrent MI. Both persons with diabetes but no prior MI, and persons with a prior MI but no diabetes are high-risk individuals. Among men, a prior MI conferred a higher risk of a coronary event than diabetes in the 45-54 year age group, but the situation was reversed in the elderly. Among diabetic women, the risk of suffering a first MI was similar to the risk that non-diabetic women with prior MI had of suffering a recurrent MI.
Journal Article
The oral Ca/calmodulin‐dependent kinase II inhibitor RA608 improves contractile function and prevents arrhythmias in heart failure
2020
Aims Excessive activation of Ca/calmodulin‐dependent kinase II (CaMKII) is of critical importance in heart failure (HF) and atrial fibrillation. Unfortunately, lack of selectivity, specificity, and bioavailability have slowed down development of inhibitors for clinical use. We investigated a novel CaMKIIδ/CaMKIIɣ‐selective, ATP‐competitive, orally available CaMKII inhibitor (RA608) on right atrial biopsies of 119 patients undergoing heart surgery. Furthermore, we evaluated its oral efficacy to prevent deterioration of HF in mice after transverse aortic constriction (TAC). Methods and results In human atrial cardiomyocytes and trabeculae, respectively, RA608 significantly reduced sarcoplasmic reticulum Ca leak, reduced diastolic tension, and increased sarcoplasmic reticulum Ca content. Patch‐clamp recordings confirmed the safety of RA608 in human cardiomyocytes. C57BL6/J mice were subjected to TAC, and left ventricular function was monitored by echocardiography. Two weeks after TAC, RA608 was administered by oral gavage for 7 days. Oral RA608 treatment prevented deterioration of ejection fraction. At 3 weeks after TAC, ejection fraction was 46.1 ± 3.7% (RA608) vs. 34.9 ± 2.6% (vehicle), n = 9 vs. n = 12, P < 0.05, ANOVA, which correlated with significantly less CaMKII autophosphorylation at threonine 287. Moreover, a single oral dose significantly reduced inducibility of atrial and ventricular arrhythmias in CaMKIIδ transgenic mice 4 h after administration. Atrial fibrillation was induced in 6/6 mice for vehicle vs. 1/7 for RA608, P < 0.05, 'n − 1' χ2 test. Ventricular tachycardia was induced in 6/7 for vehicle vs. 2/7 for RA608, P < 0.05, 'n − 1' χ2 test. Conclusions RA608 is the first orally administrable CaMKII inhibitor with potent efficacy in human myocytes. Moreover, oral administration potently inhibits arrhythmogenesis and attenuates HF development in mice in vivo.
Journal Article
Simulation of cardiac arrhythmias in human induced pluripotent stem cell-derived cardiomyocytes
by
Stengel, Laura
,
Unsöld, Julia
,
Körtl, Thomas
in
Apoptosis
,
Arrhythmia
,
Arrhythmias, Cardiac - pathology
2024
The effects and mechanisms of cardiac arrhythmias are still incompletely understood and an important subject of cardiovascular research. A major difficulty for investigating arrhythmias is the lack of appropriate human models. Here, we present a protocol for a translational simulation of different types of arrhythmias using human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM) and electric cell culture pacing. The protocol comprises the handling of ventricular and atrial hiPSC-CM before and during in vitro arrhythmia simulation and possible arrhythmia simulation protocols mimicking clinical arrhythmias like atrial fibrillation. Isolated or confluent hiPSC-CM can be used for the simulation. In vitro arrhythmia simulation did not impair cell viability of hiPSC-CM and could reproduce arrhythmia associated phenotypes of patients. The use of hiPSC-CM enables patient-specific studies of arrhythmias, genetic interventions, or drug-screening. Thus, the in vitro arrhythmia simulation protocol may offer a versatile tool for translational studies on the mechanisms and treatment options of cardiac arrhythmias.
Journal Article
Doxorubicin induces cardiotoxicity in a pluripotent stem cell model of aggressive B cell lymphoma cancer patients
2022
Cancer therapies with anthracyclines have been shown to induce cardiovascular complications. The aims of this study were to establish an in vitro induced pluripotent stem cell model (iPSC) of anthracycline-induced cardiotoxicity (ACT) from patients with an aggressive form of B-cell lymphoma and to examine whether doxorubicin (DOX)-treated ACT-iPSC cardiomyocytes (CM) can recapitulate the clinical features exhibited by patients, and thus help uncover a DOX-dependent pathomechanism. ACT-iPSC CM generated from individuals with CD20+ B-cell lymphoma who had received high doses of DOX and suffered cardiac dysfunction were studied and compared to control-iPSC CM from cancer survivors without cardiac symptoms. In cellular studies, ACT-iPSC CM were persistently more susceptible to DOX toxicity including augmented disorganized myofilament structure, changed mitochondrial shape, and increased apoptotic events. Consistently, ACT-iPSC CM and cardiac fibroblasts isolated from fibrotic human ACT myocardium exhibited higher DOX-dependent reactive oxygen species. In functional studies, Ca2+ transient amplitude of ACT-iPSC CM was reduced compared to control cells, and diastolic sarcoplasmic reticulum Ca2+ leak was DOX-dependently increased. This could be explained by overactive CaMKIIδ in ACT CM. Together with DOX-dependent augmented proarrhythmic cellular triggers and prolonged action potentials in ACT CM, this suggests a cellular link to arrhythmogenic events and contractile dysfunction especially found in ACT engineered human myocardium. CamKIIδ inhibition prevented proarrhythmic triggers in ACT. In contrast, control CM upregulated SERCA2a expression in a DOX-dependent manner, possibly to avoid heart failure conditions. In conclusion, we developed the first human patient-specific stem cell model of DOX-induced cardiac dysfunction from patients with B-cell lymphoma. Our results suggest that DOX-induced stress resulted in arrhythmogenic events associated with contractile dysfunction and finally in heart failure after persistent stress activation in ACT patients.
Journal Article