MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Inhibition of NaV1.8 prevents atrial arrhythmogenesis in human and mice
Inhibition of NaV1.8 prevents atrial arrhythmogenesis in human and mice
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Inhibition of NaV1.8 prevents atrial arrhythmogenesis in human and mice
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Inhibition of NaV1.8 prevents atrial arrhythmogenesis in human and mice
Inhibition of NaV1.8 prevents atrial arrhythmogenesis in human and mice

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Inhibition of NaV1.8 prevents atrial arrhythmogenesis in human and mice
Inhibition of NaV1.8 prevents atrial arrhythmogenesis in human and mice
Journal Article

Inhibition of NaV1.8 prevents atrial arrhythmogenesis in human and mice

2020
Request Book From Autostore and Choose the Collection Method
Overview
Pharmacologic approaches for the treatment of atrial arrhythmias are limited due to side effects and low efficacy. Thus, the identification of new antiarrhythmic targets is of clinical interest. Recent genome studies suggested an involvement of SCN10A sodium channels (NaV1.8) in atrial electrophysiology. This study investigated the role and involvement of NaV1.8 (SCN10A) in arrhythmia generation in the human atria and in mice lacking NaV1.8. NaV1.8 mRNA and protein were detected in human atrial myocardium at a significant higher level compared to ventricular myocardium. Expression of NaV1.8 and NaV1.5 did not differ between myocardium from patients with atrial fibrillation and sinus rhythm. To determine the electrophysiological role of NaV1.8, we investigated isolated human atrial cardiomyocytes from patients with sinus rhythm stimulated with isoproterenol. Inhibition of NaV1.8 by A-803467 or PF-01247324 showed no effects on the human atrial action potential. However, we found that NaV1.8 significantly contributes to late Na+ current and consequently to an increased proarrhythmogenic diastolic sarcoplasmic reticulum Ca2+ leak in human atrial cardiomyocytes. Selective pharmacological inhibition of NaV1.8 potently reduced late Na+ current, proarrhythmic diastolic Ca2+ release, delayed afterdepolarizations as well as spontaneous action potentials. These findings could be confirmed in murine atrial cardiomyocytes from wild-type mice and also compared to SCN10A−/− mice (genetic ablation of NaV1.8). Pharmacological NaV1.8 inhibition showed no effects in SCN10A−/− mice. Importantly, in vivo experiments in SCN10A−/− mice showed that genetic ablation of NaV1.8 protects against atrial fibrillation induction. This study demonstrates that NaV1.8 is expressed in the murine and human atria and contributes to late Na+ current generation and cellular arrhythmogenesis. Blocking NaV1.8 selectively counteracts this pathomechanism and protects against atrial arrhythmias. Thus, our translational study reveals a new selective therapeutic target for treating atrial arrhythmias.