Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
LanguageLanguage
-
SubjectSubject
-
Item TypeItem Type
-
DisciplineDiscipline
-
YearFrom:-To:
-
More FiltersMore FiltersIs Peer Reviewed
Done
Filters
Reset
10
result(s) for
"Pagliuca, Alfredo"
Sort by:
The miR-15a–miR-16-1 cluster controls prostate cancer by targeting multiple oncogenic activities
by
Giuffrida, Raffaella
,
Biffoni, Mauro
,
Labbaye, Catherine
in
Animals
,
Biomedical and Life Sciences
,
Biomedicine
2008
Two microRNAs, miR-15a and miR-16, localize to a chromosome region that is frequently deleted in cancer. Bonci
et al
. now show that these microRNAs have tumor suppressive effects in prostate cancer cells and regulate the expression of crucial oncogenic targets.
MicroRNAs (miRNAs) are noncoding small RNAs that repress protein translation by targeting specific messenger RNAs.
miR-15a
and
miR-16-1
act as putative tumor suppressors by targeting the oncogene
BCL2
. These miRNAs form a cluster at the chromosomal region 13q14, which is frequently deleted in cancer. Here, we report that the
miR-15a
and
miR-16-1
cluster targets
CCND1
(encoding cyclin D1) and
WNT3A
, which promotes several tumorigenic features such as survival, proliferation and invasion. In cancer cells of advanced prostate tumors, the miR-15a and miR-16 level is significantly decreased, whereas the expression of BCL2, CCND1 and WNT3A is inversely upregulated. Delivery of antagomirs specific for miR-15a and miR-16 to normal mouse prostate results in marked hyperplasia, and knockdown of miR-15a and miR-16 promotes survival, proliferation and invasiveness of untransformed prostate cells, which become tumorigenic in immunodeficient NOD-SCID mice. Conversely, reconstitution of miR-15a and miR-16-1 expression results in growth arrest, apoptosis and marked regression of prostate tumor xenografts. Altogether, we propose that
miR-15a
and
miR-16
act as tumor suppressor genes in prostate cancer through the control of cell survival, proliferation and invasion. These findings have therapeutic implications and may be exploited for future treatment of prostate cancer.
Journal Article
A pre-existing population of ZEB2+ quiescent cells with stemness and mesenchymal features dictate chemoresistance in colorectal cancer
2020
Background
Quiescent/slow cycling cells have been identified in several tumors and correlated with therapy resistance. However, the features of chemoresistant populations and the molecular factors linking quiescence to chemoresistance are largely unknown.
Methods
A population of chemoresistant quiescent/slow cycling cells was isolated through PKH26 staining (which allows to separate cells on the basis of their proliferation rate) from colorectal cancer (CRC) xenografts and subjected to global gene expression and pathway activation analyses. Factors expressed by the quiescent/slow cycling population were analyzed through lentiviral overexpression approaches for their ability to induce a dormant chemoresistant state both in vitro and in mouse xenografts. The correlation between quiescence-associated factors, CRC consensus molecular subtype and cancer prognosis was analyzed in large patient datasets.
Results
Untreated colorectal tumors contain a population of quiescent/slow cycling cells with stem cell features (quiescent cancer stem cells, QCSCs) characterized by a predetermined mesenchymal-like chemoresistant phenotype. QCSCs expressed increased levels of ZEB2, a transcription factor involved in stem cell plasticity and epithelial-mesenchymal transition (EMT), and of antiapototic factors pCRAF and pASK1. ZEB2 overexpression upregulated pCRAF/pASK1 levels resulting in increased chemoresistance, enrichment of cells with stemness/EMT traits and proliferative slowdown of tumor xenografts. In parallel, chemotherapy treatment of tumor xenografts induced the prevalence of QCSCs with a stemness/EMT phenotype and activation of the ZEB2/pCRAF/pASK1 axis, resulting in a chemotherapy-unresponsive state. In CRC patients, increased ZEB2 levels correlated with worse relapse-free survival and were strongly associated to the consensus molecular subtype 4 (CMS4) characterized by dismal prognosis, decreased proliferative rates and upregulation of EMT genes.
Conclusions
These results show that chemotherapy-naive tumors contain a cell population characterized by a coordinated program of chemoresistance, quiescence, stemness and EMT. Such population becomes prevalent upon drug treatment and is responsible for chemotherapy resistance, thus representing a key target for more effective therapeutic approaches.
Journal Article
Cancer Stem Cell‐Based Models of Colorectal Cancer Reveal Molecular Determinants of Therapy Resistance
by
Bruselles, Alessandro
,
Boe, Alessandra
,
De Luca, Gabriele
in
Animals
,
Anti-EGFR therapy
,
Cancer
2016
Colorectal cancer stem cell (CSC)‐enriched cultures were obtained efficiently from primary tumor specimens by optimizing a CSC‐isolation protocol. Based on in vitro and in vivo validation, genetic characterization, and drug sensitivity analysis, panels of CSC lines were generated with defined patterns of genetic mutations and therapy sensitivity. An analysis of CSC response to EGFR‐targeted therapy in vivo and an overview of factors implicated in therapy response/resistance are presented. Colorectal cancer (CRC) therapy mainly relies on the use of conventional chemotherapeutic drugs combined, in a subset of patients, with epidermal growth factor receptor [EGFR]‐targeting agents. Although CRC is considered a prototype of a cancer stem cell (CSC)‐driven tumor, the effects of both conventional and targeted therapies on the CSC compartment are largely unknown. We have optimized a protocol for colorectal CSC isolation that allowed us to obtain CSC‐enriched cultures from primary tumor specimens, with high efficiency. CSC isolation was followed by in vitro and in vivo validation, genetic characterization, and drug sensitivity analysis, thus generating panels of CSC lines with defined patterns of genetic mutations and therapy sensitivity. Colorectal CSC lines were polyclonal and maintained intratumor heterogeneity in terms of somatically acquired mutations and differentiation state. Such CSC‐enriched cultures were used to investigate the effects of both conventional and targeted therapies on the CSC compartment in vivo and to generate a proteomic picture of signaling pathways implicated in sensitivity/resistance to anti‐EGFR agents. We propose CSC lines as a sound preclinical framework to test the effects of therapies in vitro and in vivo and to identify novel determinants of therapy resistance. Significance Colorectal cancer stem cells (CSCs) have been shown to be responsible for tumor propagation, metastatic dissemination, and relapse. However, molecular pathways present in CSCs, as well as mechanisms of therapy resistance, are mostly unknown. Taking advantage of genetically characterized CSC lines derived from colorectal tumors, this study provides an extensive analysis of CSC response to EGFR‐targeted therapy in vivo and an overview of factors implicated in therapy response or resistance. Furthermore, the implementation of a biobank of molecularly annotated CSC lines provides an innovative resource for future investigations in colorectal cancer.
Journal Article
Gene Expression Analysis of PTEN Positive Glioblastoma Stem Cells Identifies DUB3 and Wee1 Modulation in a Cell Differentiation Model
2013
The term astrocytoma defines a quite heterogeneous group of neoplastic diseases that collectively represent the most frequent brain tumors in humans. Among them, glioblastoma multiforme represents the most malignant form and its associated prognosis is one of the poorest among tumors of the central nervous system. It has been demonstrated that a small population of tumor cells, isolated from the brain neoplastic tissue, can reproduce the parental tumor when transplanted in immunodeficient mouse. These tumor initiating cells are supposed to be involved in cancer development and progression and possess stem cell-like features; like their normal counterpart, these cells remain quiescent until they are committed to differentiation. Many studies have shown that the role of the tumor suppressor protein PTEN in cell cycle progression is fundamental for tumor dynamics: in low grade gliomas, PTEN contributes to maintain cells in G1 while the loss of its activity is frequently observed in high grade gliomas. The mechanisms underlying the above described PTEN activity have been studied in many tumors, but those involved in the maintenance of tumor initiating cells quiescence remain to be investigated in more detail. The aim of the present study is to shed light on the role of PTEN pathway on cell cycle regulation in Glioblastoma stem cells, through a cell differentiation model. Our results suggest the existence of a molecular mechanism, that involves DUB3 and WEE1 gene products in the regulation of Cdc25a, as functional effector of the PTEN/Akt pathway.
Journal Article
PLZF induces megakaryocytic development, activates Tpo receptor expression and interacts with GATA1 protein
by
Labbaye, Catherine
,
Licht, Jonathan D
,
Quaranta, Maria Teresa
in
Binding Sites
,
Biological and medical sciences
,
Cell culture
2002
We investigated the expression of the PLZF gene in purified human hematopoietic progenitors induced to unilineage erythroid, granulocytic or megakaryocytic differentiation and maturation in serum-free culture. PLZF is expressed in quiescent progenitors: the expression level progressively rises through megakaryocytic development, whereas it gradually declines in erythroid and granulopoietic culture. To investigate the role of PLZF in megakaryopoiesis, we transduced the PLZF gene into the erythro-megakaryocytic TF1 cell line. PLZF overexpression upmodulates the megakaryocytic specific markers (CD42a, CD42b, CD61, PF4) and induces the thrombopoietin receptor (TpoR). The proximal promoter of the TpoR gene is activated in PLZF-expressing TF1 cells: in this promoter region, a PLZF DNA-binding site was identified by deletion constructs studies. Interestingly, PLZF and GATA1 proteins coimmunoprecipitate in PLZF-expressing TF1 cells: enforced expression of both PLZF and GATA1 in TF1 cells results in increased upregulation of megakaryocytic markers, as compared to exogenous PLZF or GATA1 alone, suggesting a functional role for the PLZF/GATA1 complex. Our data indicate that PLZF plays a significant stimulatory role in megakaryocytic development, seemingly mediated in part by induction of TpoR expression at transcriptional level. This stimulatory effect is potentiated by physical interaction of PLZF and GATA1, which are possibly assembled in a multiprotein transcriptional complex.
Journal Article
The Notch2–Jagged1 interaction mediates stem cell factor signaling in erythropoiesis
by
Conticello, C
,
Signore, M
,
Felli, N
in
631/136/232/1473
,
631/80/86
,
Antigens, CD34 - metabolism
2011
Stem cell factor (SCF), the ligand for the c-kit receptor, is essential for the production of red blood cells during development and stress erythropoiesis. SCF promotes erythroblast proliferation and survival, while delaying erythroid differentiation through mechanisms that are largely unknown. In cultures of primary human differentiating erythroblasts, we found that SCF induces an increase in the expression of Notch2, a member of the Notch family implicated in the control of cell growth and differentiation. Functional inhibition of either Notch or its ligand Jagged1 inhibited the effects of SCF on erythroid cell expansion. SCF also induced the expression of Hes-1 and GATA-2, which may contribute to transduce Notch2 signals in response to SCF. Transduction of primary erythroid precursors with a dominant-negative Notch2 mutant inhibited both basal and SCF-mediated erythroblast expansion, and counteracted the effects of SCF on erythroblast differentiation. These findings provide a clue to understand the effects of increased proliferation and delayed differentiation elicited by SCF on the erythroid compartment and indicate Notch2 as a new player in the regulation of red cell differentiation.
Journal Article
Mek inhibition results in marked antitumor activity against metastatic melanoma patient-derived melanospheres and in melanosphere-generated xenografts
2013
One of the key oncogenic pathways involved in melanoma aggressiveness, development and progression is the RAS/BRAF/MEK pathway, whose alterations are found in most patients. These molecular anomalies are promising targets for more effective anti-cancer therapies. Some Mek inhibitors showed promising antitumor activity, although schedules and doses associated with low systemic toxicity need to be defined. In addition, it is now accepted that cancers can arise from and be maintained by the cancer stem cells (CSC) or tumor-initiating cells (TIC), commonly expanded
in vitro
as tumorspheres from several solid tumors, including melanoma (melanospheres). Here, we investigated the potential targeting of MEK pathway by exploiting highly reliable
in vitro
and
in vivo
pre-clinical models of melanomas based on melanospheres, as melanoma initiating cells (MIC) surrogates. MEK inhibition, through PD0325901, provided a successful strategy to affect survival of mutated-BRAF melanospheres and growth of wild type-BRAF melanospheres. A marked citotoxicity was observed in differentated melanoma cells regardless BRAF mutational status. PD0325901 treatment, dramatically inhibited growth of melanosphere-generated xenografts and determined impaired tumor vascularization of both mutated- and wild type-BRAF tumors, in the absence of mice toxicity. These results suggest that MEK inhibition might represent a valid treatment option for patients with both mutated- or wild type-BRAF melanomas, affecting tumor growth through multiple targets.
Journal Article
Gene Expression Analysis of PTEN Positive Glioblastoma Stem Cells Identifies DUB3 and Wee1 Modulation in a Cell Differentiation Model: e81432
2013
The term astrocytoma defines a quite heterogeneous group of neoplastic diseases that collectively represent the most frequent brain tumors in humans. Among them, glioblastoma multiforme represents the most malignant form and its associated prognosis is one of the poorest among tumors of the central nervous system. It has been demonstrated that a small population of tumor cells, isolated from the brain neoplastic tissue, can reproduce the parental tumor when transplanted in immunodeficient mouse. These tumor initiating cells are supposed to be involved in cancer development and progression and possess stem cell-like features; like their normal counterpart, these cells remain quiescent until they are committed to differentiation. Many studies have shown that the role of the tumor suppressor protein PTEN in cell cycle progression is fundamental for tumor dynamics: in low grade gliomas, PTEN contributes to maintain cells in G1 while the loss of its activity is frequently observed in high grade gliomas. The mechanisms underlying the above described PTEN activity have been studied in many tumors, but those involved in the maintenance of tumor initiating cells quiescence remain to be investigated in more detail. The aim of the present study is to shed light on the role of PTEN pathway on cell cycle regulation in Glioblastoma stem cells, through a cell differentiation model. Our results suggest the existence of a molecular mechanism, that involves DUB3 and WEE1 gene products in the regulation of Cdc25a, as functional effector of the PTEN/Akt pathway.
Journal Article
Isoquercetin as an Adjunct Therapy in Patients With Kidney Cancer Receiving First-Line Sunitinib (QUASAR): Results of a Phase I Trial
by
Bosso, Davide
,
Romeo, Valeria
,
Ribera, Dario
in
Acids
,
Adverse events
,
AMP-activated protein kinases
2018
Sunitinib is the most commonly prescribed drug for advanced renal cell carcinoma in the first-line setting and has been associated with multiple adverse events related to its on-and off-target effects, including hand and foot syndrome and fatigue. It was hypothesized that sunitinib-induced fatigue may be related to off target inhibition of the AMPK enzyme, which results in impairment of energy-producing processes at a systemic level. Quercetin is a naturally occurring flavonol with established AMPK-stimulating activity. While clinical use of quercetin is limited by its poor bio-availability, quercetin-3-O-β-d-glucopyranoside, that is isoquercetin, has an improved pharmacokinetic profile. On the grounds of the
stimulatory activity with respect to AMPk, we hypothesized that oral isoquercetin could improve fatigue in kidney cancer patients receiving sunitinib. Given the lack of data on the safety of isoquercetin given concomitantly with sunitinib, we conducted a phase I trial to assess the safety of GMP manufactured isoquercetin given at two dose levels (450 and 900 mg a day). In the 12-patient study cohort included in this study, isoquercetin was administered concomitantly with 50 mg sunitinib for a median 81 days (IQR, 75.5, 86.5). None of the 12 patients required isoquercetin suspension or isoquercetin dose reduction because of adverse events. No abnormalities in ECG, heart or lower limbs doppler ultrasound were detected. A statistically significant improvement was reported for the FACIT fatigue score (6.8 points; 95% CI: 2.8-10.8;
= 0.002) and for the FACIT Adverse Events score (18.9 points; 95% CI: 9.1-28.8;
< 0.001) after isoquercetin consumption vs. baseline. In this phase I trial, isoquercetin was remarkably safe, with a preliminary signal of activity in terms of improvement of sunitinib adverse events.
Journal Article
Evidence of Bacteroides fragilis Protection from Bartonella henselae-Induced Damage
by
Avallone, Bice
,
Infante, Teresa
,
Colicchio, Roberta
in
Analysis
,
Angiomatosis, Bacillary - genetics
,
Angiomatosis, Bacillary - microbiology
2012
Bartonella henselae is able to internalize endothelial progenitor cells (EPCs), which are resistant to the infection of other common pathogens. Bacteroides fragilis is a gram-negative anaerobe belonging to the gut microflora. It protects from experimental colitis induced by Helicobacter hepaticus through the polysaccharide A (PSA). The aim of our study was to establish: 1) whether B. fragilis colonization could protect from B. henselae infection; if this event may have beneficial effects on EPCs, vascular system and tissues. Our in vitro results establish for the first time that B. fragilis can internalize EPCs and competes with B. henselae during coinfection. We observed a marked activation of the inflammatory response by Real-time PCR and ELISA in coinfected cells compared to B. henselae-infected cells (63 vs 23 up-regulated genes), and after EPCs infection with mutant B. fragilis ΔPSA (≅90% up-regulated genes) compared to B. fragilis. Interestingly, in a mouse model of coinfection, morphological and ultrastructural analyses by hematoxylin-eosin staining and electron microscopy on murine tissues revealed that damages induced by B. henselae can be prevented in the coinfection with B. fragilis but not with its mutant B. fragilis ΔPSA. Moreover, immunohistochemistry analysis with anti-Bartonella showed that the number of positive cells per field decreased of at least 50% in the liver (20±4 vs 50±8), aorta (5±1 vs 10±2) and spleen (25±3 vs 40±6) sections of mice coinfected compared to mice infected only with B. henselae. This decrease was less evident in the coinfection with ΔPSA strain (35±6 in the liver, 5±1 in the aorta and 30±5 in the spleen). Finally, B. fragilis colonization was also able to restore the EPC decrease observed in mice infected with B. henselae (0.65 vs 0.06 media). Thus, our data establish that B. fragilis colonization is able to prevent B. henselae damages through PSA.
Journal Article