Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
16
result(s) for
"Papanastasiou, Malvina"
Sort by:
ESCRT-dependent STING degradation inhibits steady-state and cGAMP-induced signalling
2023
Stimulator of interferon genes (STING) is an intracellular sensor of cyclic di-nucleotides involved in the innate immune response against pathogen- or self-derived DNA. STING trafficking is tightly linked to its function, and its dysregulation can lead to disease. Here, we systematically characterize genes regulating STING trafficking and examine their impact on STING-mediated responses. Using proximity-ligation proteomics and genetic screens, we demonstrate that an endosomal sorting complex required for transport (ESCRT) complex containing HGS, VPS37A and UBAP1 promotes STING degradation, thereby terminating STING-mediated signaling. Mechanistically, STING oligomerization increases its ubiquitination by UBE2N, forming a platform for ESCRT recruitment at the endosome that terminates STING signaling via sorting in the lysosome. Finally, we show that expression of a UBAP1 mutant identified in patients with hereditary spastic paraplegia and associated with disrupted ESCRT function, increases steady-state STING-dependent type I IFN responses in healthy primary monocyte-derived dendritic cells and fibroblasts. Based on these findings, we propose that STING is subject to a tonic degradative flux and that the ESCRT complex acts as a homeostatic regulator of STING signaling.
STING is an intracellular sensor of pathogen- or host-derived DNA. In this study, the authors identify an ESCRT complex that regulates STING degradation, thus acting as a homeostatic regulator of STING signalling and type-I interferon responses.
Journal Article
Structure of PDE3A-SLFN12 complex reveals requirements for activation of SLFN12 RNase
by
Hoyt, Stephanie H.
,
Raymond, Donald
,
Mullahoo, James P.
in
101/28
,
631/45/535
,
631/535/1258/1259
2021
DNMDP and related compounds, or velcrins, induce complex formation between the phosphodiesterase PDE3A and the SLFN12 protein, leading to a cytotoxic response in cancer cells that express elevated levels of both proteins. The mechanisms by which velcrins induce complex formation, and how the PDE3A-SLFN12 complex causes cancer cell death, are not fully understood. Here, we show that PDE3A and SLFN12 form a heterotetramer stabilized by binding of DNMDP. Interactions between the C-terminal alpha helix of SLFN12 and residues near the active site of PDE3A are required for complex formation, and are further stabilized by interactions between SLFN12 and DNMDP. Moreover, we demonstrate that SLFN12 is an RNase, that PDE3A binding increases SLFN12 RNase activity, and that SLFN12 RNase activity is required for DNMDP response. This new mechanistic understanding will facilitate development of velcrin compounds into new cancer therapies.
The small molecule DNMDP acts as a velcrin by inducing complex formation between phosphodiesterase PDE3A and SLFN12, which kills cancer cells that express sufficient levels of both proteins. Here, the authors present the cryo-EM structure of the DNMDP-stabilized PDE3A-SLFN12 complex and show that SLFN12 is an RNase. PDE3A binding increases SLFN12 RNase activity, and SLFN12 RNase activity is required for DNMDP-mediated cancer cell killing.
Journal Article
Mass spectrometry-based profiling of single-cell histone post-translational modifications to dissect chromatin heterogeneity
2025
Single-cell proteomics confidently quantifies cellular heterogeneity, however quantification of post-translational modifications, such as those deposited on histone proteins, remains elusive. Here, we develop a robust mass spectrometry-based method for the unbiased analysis of single-cell histone post-translational modifications (sc-hPTM). sc-hPTM identifies both single- and combinatorial histone post-translational modifications (67 peptidoforms in total), which includes nearly all frequently studied histone post-translational modifications with comparable reproducibility to traditional bulk experiments. As a proof of concept, we treat cells with sodium butyrate, a histone deacetylase inhibitor, and demonstrate that our method can i) distinguish between treated and untreated cells, ii) identify sub-populations of cells with heterogeneous response to the treatment, and iii) reveal differential co-regulation of histone post-translational modifications in the context of drug treatment. The sc-hPTM method enables comprehensive investigation of chromatin heterogeneity at single-cell resolution and provides a further understanding of the histone code.
Chromatin structure is regulated by chemical modifications of histone proteins, but measuring these at single-cell resolution has been challenging. Here, the authors develop a mass spectrometry-based method to profile histone modifications in individual cells, revealing chromatin heterogeneity and differential co-regulation.
Journal Article
Proteomic profiling dataset of chemical perturbations in multiple biological backgrounds
by
Lam, Daniel
,
Young, Jennie Z.
,
MacCoss, Michael J.
in
631/154/1435/2163
,
631/1647/296
,
631/67/70
2021
While gene expression profiling has traditionally been the method of choice for large-scale perturbational profiling studies, proteomics has emerged as an effective tool in this context for directly monitoring cellular responses to perturbations. We previously reported a pilot library containing 3400 profiles of multiple perturbations across diverse cellular backgrounds in the reduced-representation phosphoproteome (P100) and chromatin space (Global Chromatin Profiling, GCP). Here, we expand our original dataset to include profiles from a new set of cardiotoxic compounds and from astrocytes, an additional neural cell model, totaling 5300 proteomic signatures. We describe filtering criteria and quality control metrics used to assess and validate the technical quality and reproducibility of our data. To demonstrate the power of the library, we present two case studies where data is queried using the concept of “connectivity” to obtain biological insight. All data presented in this study have been deposited to the ProteomeXchange Consortium with identifiers
PXD017458
(P100) and
PXD017459
(GCP) and can be queried at
https://clue.io/proteomics
.
Measurement(s)
drug perturbation response
Technology Type(s)
proteomic profiling
Factor Type(s)
cell line • drug
Sample Characteristic - Organism
Homo sapiens
Machine-accessible metadata file describing the reported data:
https://doi.org/10.6084/m9.figshare.14744064
Journal Article
Endocannabinoid and Cannabinoid-Like Fatty Acid Amide Levels Correlate with Pain-Related Symptoms in Patients with IBS-D and IBS-C: A Pilot Study
by
Cygankiewicz, Adam I.
,
Wood, JodiAnne T.
,
Mokrowiecka, Anna
in
Adult
,
Amides - blood
,
Analysis
2013
Irritable bowel syndrome (IBS) is a functional gastrointestinal (GI) disorder, associated with alterations of bowel function, abdominal pain and other symptoms related to the GI tract. Recently the endogenous cannabinoid system (ECS) was shown to be involved in the physiological and pathophysiological control of the GI function. The aim of this pilot study was to investigate whether IBS defining symptoms correlate with changes in endocannabinoids or cannabinoid like fatty acid levels in IBS patients.
AEA, 2-AG, OEA and PEA plasma levels were determined in diarrhoea-predominant (IBS-D) and constipation-predominant (IBS-C) patients and were compared to healthy subjects, following the establishment of correlations between biolipid contents and disease symptoms. FAAH mRNA levels were evaluated in colonic biopsies from IBS-D and IBS-C patients and matched controls.
Patients with IBS-D had higher levels of 2AG and lower levels of OEA and PEA. In contrast, patients with IBS-C had higher levels of OEA. Multivariate analysis found that lower PEA levels are associated with cramping abdominal pain. FAAH mRNA levels were lower in patients with IBS-C.
IBS subtypes and their symptoms show distinct alterations of endocannabinoid and endocannabinoid-like fatty acid levels. These changes may partially result from reduced FAAH expression. The here reported changes support the notion that the ECS is involved in the pathophysiology of IBS and the development of IBS symptoms.
Journal Article
Epigenetic silencing by SETDB1 suppresses tumour intrinsic immunogenicity
2021
Epigenetic dysregulation is a defining feature of tumorigenesis that is implicated in immune escape
1
,
2
. Here, to identify factors that modulate the immune sensitivity of cancer cells, we performed in vivo CRISPR–Cas9 screens targeting 936 chromatin regulators in mouse tumour models treated with immune checkpoint blockade. We identified the H3K9 methyltransferase SETDB1 and other members of the HUSH and KAP1 complexes as mediators of immune escape
3
–
5
. We also found that amplification of
SETDB1
(1q21.3) in human tumours is associated with immune exclusion and resistance to immune checkpoint blockade. SETDB1 represses broad domains, primarily within the open genome compartment. These domains are enriched for transposable elements (TEs) and immune clusters associated with segmental duplication events, a central mechanism of genome evolution
6
. SETDB1 loss derepresses latent TE-derived regulatory elements, immunostimulatory genes, and TE-encoded retroviral antigens in these regions, and triggers TE-specific cytotoxic T cell responses in vivo. Our study establishes SETDB1 as an epigenetic checkpoint that suppresses tumour-intrinsic immunogenicity, and thus represents a candidate target for immunotherapy.
A CRISPR–Cas9 screen of chromatin regulators in mouse tumour models treated with immune checkpoint blockade identifies SETDB1 as an epigenetic checkpoint protein that suppresses tumour-intrinsic immunogenicity.
Journal Article
Loss of Kmt2c or Kmt2d drives brain metastasis via KDM6A-dependent upregulation of MMP3
2024
KMT2C
and
KMT2D
, encoding histone H3 lysine 4 methyltransferases, are among the most commonly mutated genes in triple-negative breast cancer (TNBC). However, how these mutations may shape epigenomic and transcriptomic landscapes to promote tumorigenesis is largely unknown. Here we describe that deletion of
Kmt2c
or
Kmt2d
in non-metastatic murine models of TNBC drives metastasis, especially to the brain. Global chromatin profiling and chromatin immunoprecipitation followed by sequencing revealed altered H3K4me1, H3K27ac and H3K27me3 chromatin marks in knockout cells and demonstrated enhanced binding of the H3K27me3 lysine demethylase KDM6A, which significantly correlated with gene expression. We identified
Mmp3
as being commonly upregulated via epigenetic mechanisms in both knockout models. Consistent with these findings, samples from patients with
KMT2C-
mutant TNBC have higher
MMP3
levels. Downregulation or pharmacological inhibition of KDM6A diminished
Mmp3
upregulation induced by the loss of histone–lysine
N
-methyltransferase 2 (KMT2) and prevented brain metastasis similar to direct downregulation of
Mmp3
. Taken together, we identified the KDM6A–matrix metalloproteinase 3 axis as a key mediator of KMT2C/D loss-driven metastasis in TNBC.
Seehawer et al. show that deletion of
Kmt2c
or
Kmt2d
promotes brain metastasis in mouse models of triple-negative breast cancer due to altered KDM6A activity and upregulated MMP3 expression, which may constitute a potential therapeutic target.
Journal Article
Disrupted uromodulin trafficking is rescued by targeting TMED cargo receptors
2024
The trafficking dynamics of uromodulin (UMOD), the most abundant protein in human urine, play a critical role in the pathogenesis of kidney disease. Monoallelic mutations in the UMOD gene cause autosomal dominant tubulointerstitial kidney disease (ADTKD-UMOD), an incurable genetic disorder that leads to kidney failure. The disease is caused by the intracellular entrapment of mutant UMOD in kidney epithelial cells, but the precise mechanisms mediating disrupted UMOD trafficking remain elusive. Here, we report that transmembrane Emp24 protein transport domain-containing (TMED) cargo receptors TMED2, TMED9, and TMED10 bind UMOD and regulate its trafficking along the secretory pathway. Pharmacological targeting of TMEDs in cells, in human kidney organoids derived from patients with ADTKD-UMOD, and in mutant-UMOD-knockin mice reduced intracellular accumulation of mutant UMOD and restored trafficking and localization of UMOD to the apical plasma membrane. In vivo, the TMED-targeted small molecule also mitigated ER stress and markers of kidney damage and fibrosis. Our work reveals TMED-targeting small molecules as a promising therapeutic strategy for kidney proteinopathies.
Journal Article
Hydrogen-Deuterium Exchange Mass Spectrometry (HDX-MS) Centroid Data Measured between 3.6 °C and 25.4 °C for the Fab Fragment of NISTmAb
by
Hudgens, Jeffrey W.
,
Bou-Assaf, George M.
,
Pandey, Ratnesh
in
Amides
,
Analytical chemistry
,
Centroids (Geometry)
2019
The spreadsheet file reported herein provides centroid data, descriptive of deuterium uptake, for the FabFragment of NISTmAb (PDB: 5K8A) reference material, as measured by the bottom-up hydrogen-deuterium exchange mass spectrometry (HDX-MS) method. The protein sample was incubated in deuterium-rich solutions under uniform pH and salt concentrations between 3.6 oC and 25.4 oC for seven intervals ranging over (0 to 14,400) s plus a ∞pseudo s control. The deuterium content of peptic peptide fragments were measured by mass spectrometry. These data were reported by fifteen laboratories, which conducted the measurements using orbitrap and Q-TOF mass spectrometers. The cohort reported ≈ 78,900 centroids for 430 proteolytic peptide sequences of the heavy and light chains of NISTmAb, providing nearly 100 % coverage. In addition, some groups reported ≈ 10,900 centroid measurements for 77 peptide sequences of the Fc fragment. The instrumentation and physical and chemical conditions under which these data were acquired are documented.
Journal Article
Mass Spectrometry-based Profiling of Single-cell Histone Post-translational Modifications to Dissect Chromatin Heterogeneity
2024
Single-cell proteomics confidently quantifies cellular heterogeneity, yet precise quantification of post-translational modifications, such as those deposited on histone proteins, has remained elusive. Here, we developed a robust mass spectrometry-based method for the unbiased analysis of single-cell histone post-translational modifications (schPTM). schPTM identifies both single and combinatorial histone post-translational modifications (68 peptidoforms in total), which includes nearly all frequently studied histone post-translational modifications with comparable reproducibility to traditional bulk experiments. As a proof of concept, we treated cells with sodium butyrate, a histone deacetylase inhibitor, and demonstrated that our method can i) distinguish between treated and non-treated cells, ii) identify sub-populations of cells with heterogeneous response to the treatment, and iii) reveal differential co-regulation of histone post-translational modifications in the context of drug treatment. The schPTM method enables comprehensive investigation of chromatin heterogeneity at single-cell resolution and provides further understanding of the histone code.
Journal Article