Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
201
result(s) for
"Parodi Alessandro"
Sort by:
The impact of nanoparticle protein corona on cytotoxicity, immunotoxicity and target drug delivery
by
Toledano Furman, Naama E
,
Molinaro, Roberto
,
Parodi, Alessandro
in
Animals
,
Blood
,
Complement Activation
2016
In a perfect sequence of events, nanoparticles (NPs) are injected into the bloodstream where they circulate until they reach the target tissue. The ligand on the NP surface recognizes its specific receptor expressed on the target tissue and the drug is released in a controlled manner. However, once injected in a physiological environment, NPs interact with biological components and are surrounded by a protein corona (PC). This can trigger an immune response and affect NP toxicity and targeting capabilities. In this review, we provide a survey of recent findings on the NP-PC interactions and discuss how the PC can be used to modulate both cytotoxicity and the immune response as well as to improve the efficacy of targeted delivery of nanocarriers.
Journal Article
Established and Emerging Strategies for Drug Delivery Across the Blood-Brain Barrier in Brain Cancer
by
Zamyatnin, Andrey
,
Parodi, Alessandro
,
Baldin, Alexey
in
Blood-brain barrier
,
Brain cancer
,
Cancer therapies
2019
Brain tumors are characterized by very high mortality and, despite the continuous research on new pharmacological interventions, little therapeutic progress has been made. One of the main obstacles to improve current treatments is represented by the impermeability of the blood vessels residing within nervous tissue as well as of the new vascular net generating from the tumor, commonly referred to as blood-brain barrier (BBB) and blood-brain tumor barrier (BBTB), respectively. In this review, we focused on established and emerging strategies to overcome the blood-brain barrier to increase drug delivery for brain cancer. To date, there are three broad strategies being investigated to cross the brain vascular wall and they are conceived to breach, bypass, and negotiate the access to the nervous tissue. In this paper, we summarized these approaches highlighting their working mechanism and their potential impact on the quality of life of the patients as well as their current status of development.
Journal Article
Bioactive peptides: an alternative therapeutic approach for cancer management
by
Sheikhi, Shima
,
Tayybi Azar, Mehdi
,
Ganjalıkhani-Hakemi, Mazdak
in
Amino acids
,
anticancer
,
Antimicrobial agents
2024
Cancer is still considered a lethal disease worldwide and the patients’ quality of life is affected by major side effects of the treatments including post-surgery complications, chemo-, and radiation therapy. Recently, new therapeutic approaches were considered globally for increasing conventional cancer therapy efficacy and decreasing the adverse effects. Bioactive peptides obtained from plant and animal sources have drawn increased attention because of their potential as complementary therapy. This review presents a contemporary examination of bioactive peptides derived from natural origins with demonstrated anticancer, ant invasion, and immunomodulation properties. For example, peptides derived from common beans, chickpeas, wheat germ, and mung beans exhibited antiproliferative and toxic effects on cancer cells, favoring cell cycle arrest and apoptosis. On the other hand, peptides from marine sources showed the potential for inhibiting tumor growth and metastasis. In this review we will discuss these data highlighting the potential befits of these approaches and the need of further investigations to fully characterize their potential in clinics.
Journal Article
Preterm white matter injury: ultrasound diagnosis and classification
2020
White matter injury (WMI) is the most frequent form of preterm brain injury. Cranial ultrasound (CUS) remains the preferred modality for initial and sequential neuroimaging in preterm infants, and is reliable for the diagnosis of cystic periventricular leukomalacia. Although magnetic resonance imaging is superior to CUS in detecting the diffuse and more subtle forms of WMI that prevail in very premature infants surviving nowadays, recent improvement in the quality of neonatal CUS imaging has broadened the spectrum of preterm white matter abnormalities that can be detected with this technique. We propose a structured CUS assessment of WMI of prematurity that seeks to account for both cystic and non-cystic changes, as well as signs of white matter loss and impaired brain growth and maturation, at or near term equivalent age. This novel assessment system aims to improve disease description in both routine clinical practice and clinical research. Whether this systematic assessment will improve prediction of outcome in preterm infants with WMI still needs to be evaluated in prospective studies.
Journal Article
Cranial ultrasound findings in preterm germinal matrix haemorrhage, sequelae and outcome
2020
Germinal matrix-intraventricular haemorrhage (GMH-IVH), periventricular haemorrhagic infarction (PHI) and its complication, post-haemorrhagic ventricular dilatation (PHVD), are still common neonatal morbidities in preterm infants that are highly associated with adverse neurodevelopmental outcome. Typical cranial ultrasound (CUS) findings of GMH-IVH, PHI and PHVD, their anatomical substrates and underlying mechanisms are discussed in this paper. Furthermore, we propose a detailed descriptive classification of GMH-IVH and PHI that may improve quality of CUS reporting and prediction of outcome in infants suffering from GMH-IVH/PHI.
Journal Article
The Role of Cysteine Cathepsins in Cancer Progression and Drug Resistance
by
Soond, Surinder M.
,
Daglioglu, Cenk
,
Tutar, Yusuf
in
Amino acids
,
Animals
,
Antineoplastic Agents - therapeutic use
2019
Cysteine cathepsins are lysosomal enzymes belonging to the papain family. Their expression is misregulated in a wide variety of tumors, and ample data prove their involvement in cancer progression, angiogenesis, metastasis, and in the occurrence of drug resistance. However, while their overexpression is usually associated with highly aggressive tumor phenotypes, their mechanistic role in cancer progression is still to be determined to develop new therapeutic strategies. In this review, we highlight the literature related to the role of the cysteine cathepsins in cancer biology, with particular emphasis on their input into tumor biology.
Journal Article
Stefin A Regulation of Cathepsin B Expression and Localization in Cancerous and Non-Cancerous Cells
by
Kolesova, Ekaterina P.
,
Syrocheva, Anastasiia O.
,
Parodi, Alessandro
in
Analysis
,
Cancer
,
Cathepsin B - genetics
2025
Cathepsin B (CTSB), a lysosomal cysteine protease, plays pivotal roles in cellular homeostasis and pathology, including cancer progression. This study investigates the regulatory interplay between CTSB and Stefin A (STFA), an endogenous inhibitor of cysteine proteases, in renal and prostate cancer cells. Using plasmid-based overexpression and silencing systems, we demonstrated that overexpressing STFA significantly reduces CTSB activity and protein levels, while silencing STFA leads to elevated CTSB activity and expression in cancer cells but not in non-cancerous cells (embryonic kidney cells—Hek293T and endothelial cells—EA.hy926). Furthermore, STFA modulates the subcellular distribution of CTSB, with STFA overexpression reducing nuclear CTSB levels and silencing inducing cytoplasmic accumulation in cancer cells. Colocalization analysis confirms a direct interaction between STFA and CTSB, highlighting the spatial coordination necessary for effective protease inhibition. These findings underscore the critical role of the CTSB-STFA axis in maintaining proteolytic balance and suggest potential therapeutic strategies targeting this interaction in renal carcinoma and other cancers.
Journal Article
Albumin Nanovectors in Cancer Therapy and Imaging
by
Zamyatnin, Andrey
,
Miao, Jiaxing
,
Parodi, Alessandro
in
albumin
,
Albumins - chemistry
,
Albumins - therapeutic use
2019
Albumin nanovectors represent one of the most promising carriers recently generated because of the cost-effectiveness of their fabrication, biocompatibility, safety, and versatility in delivering hydrophilic and hydrophobic therapeutics and diagnostic agents. In this review, we describe and discuss the recent advances in how this technology has been harnessed for drug delivery in cancer, evaluating the commonly used synthesis protocols and considering the key factors that determine the biological transport and the effectiveness of such technology. With this in mind, we highlight how clinical and experimental albumin-based delivery nanoplatforms may be designed for tackling tumor progression or improving the currently established diagnostic procedures.
Journal Article
Nanomedicine for increasing the oral bioavailability of cancer treatments
by
Chulanov, Vladimir
,
Zamyatnin, Andrey A.
,
Buzaeva, Polina
in
Administration, Oral
,
Animals
,
Antineoplastic Agents - chemistry
2021
Oral administration is an appealing route of delivering cancer treatments. However, the gastrointestinal tract is characterized by specific and efficient physical, chemical, and biological barriers that decrease the bioavailability of medications, including chemotherapeutics. In recent decades, the fields of material science and nanomedicine have generated several delivery platforms with high potential for overcoming multiple barriers associated to oral administration. This review describes the properties of several nanodelivery systems that improve the bioavailability of orally administered therapeutics, highlighting their advantages and disadvantages in generating successful anticancer oral nanomedicines.
Graphical Abstract
Journal Article
State-of-the-art neonatal cerebral ultrasound: technique and reporting
2020
In the past three decades, cerebral ultrasound (CUS) has become a trusted technique to study the neonatal brain. It is a relatively cheap, non-invasive, bedside neuroimaging method available in nearly every hospital. Traditionally, CUS was used to detect major abnormalities, such as intraventricular hemorrhage (IVH), periventricular hemorrhagic infarction, post-hemorrhagic ventricular dilatation, and (cystic) periventricular leukomalacia (cPVL). The use of different acoustic windows, such as the mastoid and posterior fontanel, and ongoing technological developments, allows for recognizing other lesion patterns (e.g., cerebellar hemorrhage, perforator stroke, developmental venous anomaly). The CUS technique is still being improved with the use of higher transducer frequencies (7.5–18 MHz), 3D applications, advances in vascular imaging (e.g. ultrafast plane wave imaging), and improved B-mode image processing. Nevertheless, the helpfulness of CUS still highly depends on observer skills, knowledge, and experience. In this special article, we discuss how to perform a dedicated state-of-the-art neonatal CUS, and we provide suggestions for structured reporting and quality assessment.
Journal Article