Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
1,066 result(s) for "Passerini, A."
Sort by:
Probing cosmic inflation with the LiteBIRD cosmic microwave background polarization survey
LiteBIRD, the Lite (Light) satellite for the study of B-mode polarization and Inflation from cosmic background Radiation Detection, is a space mission for primordial cosmology and fundamental physics. The Japan Aerospace Exploration Agency (JAXA) selected LiteBIRD in May 2019 as a strategic large-class (L-class) mission, with an expected launch in the late 2020s using JAXA’s H3 rocket. LiteBIRD is planned to orbit the Sun–Earth Lagrangian point L2, where it will map the cosmic microwave background polarization over the entire sky for three years, with three telescopes in 15 frequency bands between 34 and 448 GHz, to achieve an unprecedented total sensitivity of $2.2\\, \\mu$K-arcmin, with a typical angular resolution of 0.5○ at 100 GHz. The primary scientific objective of LiteBIRD is to search for the signal from cosmic inflation, either making a discovery or ruling out well-motivated inflationary models. The measurements of LiteBIRD will also provide us with insight into the quantum nature of gravity and other new physics beyond the standard models of particle physics and cosmology. We provide an overview of the LiteBIRD project, including scientific objectives, mission and system requirements, operation concept, spacecraft and payload module design, expected scientific outcomes, potential design extensions, and synergies with other projects.
Generating fine-grained surrogate temporal networks
Temporal networks are essential for modeling and understanding time-dependent systems, from social interactions to biological systems. However, real-world data to construct meaningful temporal networks are expensive to collect or unshareable due to privacy concerns. Generating arbitrarily large and anonymized synthetic graphs with the properties of real-world networks, namely surrogate networks, is a potential way to bypass the problem. However, it is not easy to build surrogate temporal networks which do not lack information on the temporal and/or topological properties of the input network and their correlations. Here, we propose a simple and efficient method that decomposes the input network into star-like structures evolving in time, used in turn to generate a surrogate temporal network. The model is compared with state-of-the-art models in terms of similarity of the generated networks with the original ones, showing its effectiveness and its efficiency in terms of execution time. The simplicity of the algorithm makes it interpretable, extendable and scalable.Surrogate networks are synthetic alternatives to real world networks that avoid expensive data collection and privacy issues, but they often lack information on the temporal or topological properties of the input network. The authors propose a method to construct realistic surrogate network, outperforming the existing ones in accuracy and execution time.
Sensitivity Modeling for LiteBIRD
LiteBIRD is a future satellite mission designed to observe the polarization of the cosmic microwave background radiation in order to probe the inflationary universe. LiteBIRD is set to observe the sky using three telescopes with transition-edge sensor bolometers. In this work we estimated the LiteBIRD instrumental sensitivity using its current design. We estimated the detector noise due to the optical loadings using physical optics and ray-tracing simulations. The noise terms associated with thermal carrier and readout noise were modeled in the detector noise calculation. We calculated the observational sensitivities over fifteen bands designed for the LiteBIRD telescopes using assumed observation time efficiency.
A New Readout Electronic for Kinetic Inductance Detectors
With this contribution we show the readout electronics for kinetic inductance detectors (KIDs) that we are developing based on commercial IQ transceivers from National Instruments and using a Virtex 5 class FPGA. It will be the readout electronics of the COSmic Monopole Observer (COSMO) experiment, a ground based cryogenic Martin–Puplett Interferometer searching for the cosmic microwave background spectral distortions. The readout electronics require a sampling rate in the range of tens of kHz, which is both due to a fast rotating mirror modulating the signal and the time constant of the COSMO KIDs. In this contribution we show the capabilities of our readout electronics using Niobium KIDs developed by Paris Observatory for our 5 K cryogenic system. In particular, we demonstrate the capability to detect 23 resonators from frequency sweeps and to readout the state of each resonator with a sampling rate of about 8 kHz. The readout is based on a finite-state machine where the first two states look for the resonances and generate the comb of tones, while the third one performs the acquisition of phase and amplitude of each detector in free running. Our electronics are based on commercial modules, which brings two key advantages: they can be acquired easily and it is relative simple to write and modify the firmware within the LabView environment in order to meet the needs of the experiment.
Coexisting Proinflammatory and Antioxidative Endothelial Transcription Profiles in a Disturbed Flow Region of the Adult Porcine Aorta
In the arterial circulation, regions of disturbed flow (DF), which are characterized by flow separation and transient vortices, are susceptible to atherogenesis, whereas regions of undisturbed laminar flow (UF) appear protected. Coordinated regulation of gene expression by endothelial cells (EC) may result in differing regional phenotypes that either favor or inhibit atherogenesis. Linearly amplified RNA from freshly isolated EC of DF (inner aortic arch) and UF (descending thoracic aorta) regions of normal adult pigs was used to profile differential gene expression reflecting the steady state in vivo. By using human cDNA arrays, ≈2,000 putatively differentially expressed genes were identified through false-discovery-rate statistical methods. A sampling of these genes was validated by quantitative realtime PCR and/or immunostaining en face. Biological pathway analysis revealed that in DF there was up-regulation of several broad-acting inflammatory cytokines and receptors, in addition to elements of the NF-κB system, which is consistent with a proinflammatory phenotype. However, the NF-κB complex was predominantly cytoplasmic (inactive) in both regions, and no significant differences were observed in the expression of key adhesion molecules for inflammatory cells associated with early atherogenesis. Furthermore, there was no histological evidence of inflammation. Protective profiles were observed in DF regions, notably an enhanced antioxidative gene expression. This study provides a public database of regional EC gene expression in a normal animal, implicates hemodynamics as a contributory mechanism to athero-susceptibility, and reveals the coexistence of pro- and antiatherosclerotic transcript profiles in susceptible regions. The introduction of additional risk factors may shift this balance to favor lesion development.
Measuring the CMB primordial B-modes with Bolometric Interferometry
The Q&U Bolometric Interferometer for Cosmology (QL’BIC) is the first bolometric interferometer designed to measure the primordial B-mode polarization of the Cosmic Microwave Background (CMB). Bolometric interferometry is a novel technique that combines the sensitivity of bolometric detectors with the control of systematic effects that is typical of interferometry, both key features in the quest for the faint signal of the primordial B-modes. A unique feature is the so-called “spectral imaging”, i.e., the ability to recover the sky signal in several sub-bands within the physical band during data analysis. This feature provides an in-band spectral resolution of ∆v/v ~ 0.04 that is unattainable by a traditional imager. This is a key tool for controlling the Galactic foregrounds contamination. In this paper, we describe the principles of bolometric interferometry, the current status of the QU BIC experiment and future prospects.
Cardio-respiratory and electromyographic responses to ergometer and on-water rowing in elite rowers
The aim of this study was to compare muscle activation and cardio-respiratory response during ergometer and on-water rowing. Nine internationally competitive rowers (five Olympic Games medal winners, age 25.6 ± 4.8 years) were requested to perform a 1,000 m race simulation test in the two conditions. Surface electromyographic (sEMG) signals from trapezius superior (TRS), latissimus dorsi (LD), biceps brachii (BB), rectus femoris (RF), vastus medialis (VAM), vastus lateralis (VAL), biceps femoris (BF) and tibialis anterior (TA) muscles were recorded continuously during the tests together with other cardio-respiratory parameters: heart rate (HR), ventilation (V E ), oxygen consumption . On-water, subjects covered the same distance in a longer time (218.4 ± 3.8 s vs. 178.1 ± 5.6 s during ergometer test). TRS, LD, BB, RF, VAM and VAL muscle activation on-water was lower than off-water during the rowing race. and V E responses were similar between the two conditions even if the time to complete the 1,000 m race simulation test was higher on-water. The results indicate that for most of the analyzed muscles EMG activation on the ergometer is higher than on-water with the maximal activity at the beginning of the on-water test due reasonably to overcome the forces opposing the forward motion, while the ergometer task elicited increasing muscle activation over time. The present data may be considered by coaches when choosing a rowing ergometer in substitution for the training on-water or when relying on the indoor tests to select the crew.
Differential impact of acute bout of exercise on redox- and oxidative damage-related profiles between untrained subjects and amateur runners
Despite the demonstrated exercise-induced increase in reactive oxygen species (ROS) production, growing epidemiological evidence indicates that habitual, moderate physical activity reduces the incidence of several oxidative stress-based diseases. This apparent paradox can be explained taking into account that ROS produced during repeated exercise bouts may act as mild stressors able to trigger physiological and biomolecular hormetic responses through a number of redox-sensitive transcription pathways. Unfortunately, much more limited information is available from general population-based research, which could better reflect the condition of common people interested in achieving and maintaining good fitness levels. The present work aimed at investigating whether and how exercise-related habits in non-professional regular runners (n=33) can affect the systemic anti-oxidative capacity, and the resting serum levels of typical lipid peroxidation-related by-products and oxidativelydamaged proteins, in comparison with untrained sedentary individuals (n=25). We also analyzed in both groups the redox response elicited by a modified Bruce-based maximal exercise test on the same parameters. Our findings indicated that longterm regular and moderate practice of aerobic physical activity can increase antioxidant defense systems, lower the resting protein oxidation processes and reduce the immediate upregulation of lipid-targeting oxidative stress in response to an acute bout of exercise.
Automatic Classification of Provisions in Legislative Texts
Legislation usually lacks a systematic organization which makes the management and the access to norms a hard problem to face. A more analytic semantic unit of reference ( provision ) for legislative texts was identified. A model of provisions (provisions types and their arguments) allows to describe the semantics of rules in legislative texts. It can be used to develop advanced semantic-based applications and services on legislation. In this paper an automatic bottom-up strategy to qualify existing legislative texts in terms of provision types is described. [PUBLICATION ABSTRACT]
Refined broad-scale sub-glacial morphology of Aurora Subglacial Basin, East Antarctica derived by an ice-dynamics-based interpolation scheme
Ice thickness data over much of East Antarctica are sparse and irregularly distributed. This poses difficulties for reconstructing the homogeneous coverage needed to properly assess underlying sub-glacial morphology and fundamental geometric constraints on sea level rise. Here we introduce a new physically-based ice thickness interpolation scheme and apply this to existing ice thickness data in the Aurora Subglacial Basin region. The skill and robustness of the new reconstruction is demonstrated by comparison with new data from the ICECAP project. The interpolated morphology shows an extensive marine-based ice sheet, with considerably more area below sea-level than shown by prior studies. It also shows deep features connecting the coastal grounding zone with the deepest regions in the interior. This has implications for ice sheet response to a warming ocean and underscores the importance of obtaining additional high resolution data in these marginal zones for modelling ice sheet evolution.