Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
336
result(s) for
"Peñuelas, J."
Sort by:
Plant-soil interactions in Mediterranean forest and shrublands: impacts of climatic change
by
Peñuelas, J.
,
Sardans, J.
in
Agronomy. Soil science and plant productions
,
Animal, plant and microbial ecology
,
bacteria
2013
Background In the Mediterranean climate, plants have evolved under conditions of low soil-water and nutrient availabilities and have acquired a series of adaptive traits that, in turn exert strong feedback on soil fertility, structure, and protection. As a result, plant-soil systems constitute complex interactive webs where these adaptive traits allow plants to maximize the use of scarce resources. Scope It is necessary to review the current bibliography to highlight the most know characteristic mechanisms underlying Mediterranean plant-soil feed-backs and identify the processes that merit further research in order to reach an understanding of the plant-soil feedbacks and its capacity to cope with future global change scenarios. In this review, we characterize the functional and structural plant-soil relationships and feedbacks in Mediterranean regions. We thereafter discuss the effects of global change drivers on these complex interactions between plants and soil. Conclusions The large plant diversity that characterizes Mediterranean ecosystems is associated to the success of coexisting species in avoiding competition for soil resources by differential exploitation in space (soil layers) and time (year and daily). Among plant and soil traits, high foliar nutrient re-translocation and large contents of recalcitrant compounds reduce nutrient cycling. Meanwhile increased allocation of resources to roots and soil enzymes help to protect against soil erosion and to improve soil fertility and capacity to retain water. The long-term evolutionary adaptation to drought of Mediterranean plants allows them to cope with moderate increases of drought without significant losses of production and survival in some species. However, other species have proved to be more sensitive decreasing their growth and increasing their mortality under moderate rising of drought. All these increases contribute to species composition shifts. Moreover, in more xeric sites, the desertification resulting from synergic interactions among some related process such as drought increases, torrential rainfall increases and human driven disturbances is an increasing concern. A research priority now is to discern the effects of long-term increases in atmospheric CO₂ concentrations, warming, and drought on soil fertility and water availability and on the structure of soil communities (e.g., shifts from bacteria to fungi) and on patching vegetation and root-water uplift (from soil to plant and from soil deep layers to soil superficial layers) roles in desertification.
Journal Article
Global patterns of phosphatase activity in natural soils
2017
Soil phosphatase levels strongly control the biotic pathways of phosphorus (P), an essential element for life, which is often limiting in terrestrial ecosystems. We investigated the influence of climatic and soil traits on phosphatase activity in terrestrial systems using metadata analysis from published studies. This is the first analysis of global measurements of phosphatase in natural soils. Our results suggest that organic P (P
org
), rather than available P, is the most important P fraction in predicting phosphatase activity. Structural equation modeling using soil total nitrogen (TN), mean annual precipitation, mean annual temperature, thermal amplitude and total soil carbon as most available predictor variables explained up to 50% of the spatial variance in phosphatase activity. In this analysis, P
org
could not be tested and among the rest of available variables, TN was the most important factor explaining the observed spatial gradients in phosphatase activity. On the other hand, phosphatase activity was also found to be associated with climatic conditions and soil type across different biomes worldwide. The close association among different predictors like P
org
, TN and precipitation suggest that P recycling is driven by a broad scale pattern of ecosystem productivity capacity.
Journal Article
Sources, transport and deposition of iron in the global atmosphere
Atmospheric deposition of iron (Fe) plays an important role in controlling oceanic primary productivity. However, the sources of Fe in the atmosphere are not well understood. In particular, the combustion sources of Fe and the subsequent deposition to the oceans have been accounted for in only few ocean biogeochemical models of the carbon cycle. Here we used a mass-balance method to estimate the emissions of Fe from the combustion of fossil fuels and biomass by accounting for the Fe contents in fuel and the partitioning of Fe during combustion. The emissions of Fe attached to aerosols from combustion sources were estimated by particle size, and their uncertainties were quantified by a Monte Carlo simulation. The emissions of Fe from mineral sources were estimated using the latest soil mineralogical database to date. As a result, the total Fe emissions from combustion averaged for 1960–2007 were estimated to be 5.3 Tg yr−1 (90% confidence of 2.3 to 12.1). Of these emissions, 1, 27 and 72% were emitted in particles < 1 μm (PM1), 1–10 μm (PM1-10), and > 10 μm (PM> 10), respectively, compared to a total Fe emission from mineral dust of 41.0 Tg yr−1 in a log-normal distribution with a mass median diameter of 2.5 μm and a geometric standard deviation of 2. For combustion sources, different temporal trends were found in fine and medium-to-coarse particles, with a notable increase in Fe emissions in PM1 since 2000 due to an increase in Fe emission from motor vehicles (from 0.008 to 0.0103 Tg yr−1 in 2000 and 2007, respectively). These emissions have been introduced in a global 3-D transport model run at a spatial resolution of 0.94° latitude by 1.28° longitude to evaluate our estimation of Fe emissions. The modelled Fe concentrations as monthly means were compared with the monthly (57 sites) or daily (768 sites) measured concentrations at a total of 825 sampling stations. The deviation between modelled and observed Fe concentrations attached to aerosols at the surface was within a factor of 2 at most sampling stations, and the deviation was within a factor of 1.5 at sampling stations dominated by combustion sources. We analysed the relative contribution of combustion sources to total Fe concentrations over different regions of the world. The new mineralogical database led to a modest improvement in the simulation relative to station data even in dust-dominated regions, but could provide useful information on the chemical forms of Fe in dust for coupling with ocean biota models. We estimated a total Fe deposition sink of 8.4 Tg yr−1 over global oceans, 7% of which originated from the combustion sources. Our central estimates of Fe emissions from fossil fuel combustion (mainly from coal) are generally higher than those in previous studies, although they are within the uncertainty range of our estimates. In particular, the higher than previously estimated Fe emission from coal combustion implies a larger atmospheric anthropogenic input of soluble Fe to the northern Atlantic and northern Pacific Oceans, which is expected to enhance the biological carbon pump in those regions.
Journal Article
Evaluating the convergence between eddy-covariance and biometric methods for assessing carbon budgets of forests
2016
The eddy-covariance (EC) micro-meteorological technique and the ecology-based biometric methods (BM) are the primary methodologies to quantify CO
2
exchange between terrestrial ecosystems and the atmosphere (net ecosystem production, NEP) and its two components, ecosystem respiration and gross primary production. Here we show that EC and BM provide different estimates of NEP, but comparable ecosystem respiration and gross primary production for forest ecosystems globally. Discrepancies between methods are not related to environmental or stand variables, but are consistently more pronounced for boreal forests where carbon fluxes are smaller. BM estimates are prone to underestimation of net primary production and overestimation of leaf respiration. EC biases are not apparent across sites, suggesting the effectiveness of standard post-processing procedures. Our results increase confidence in EC, show in which conditions EC and BM estimates can be integrated, and which methodological aspects can improve the convergence between EC and BM.
Site-level quantification of Net Ecosystem Production (NEP) and associated components rely on eddy covariance and biometric methods. Here these techniques are compared for global forest carbon fluxes, revealing differences in NEP, but similar estimates of ecosystem respiration and gross primary production.
Journal Article
Warming and drought alter soil phosphatase activity and soil P availability in a Mediterranean shrubland
by
Estiarte, M
,
Sardans, J
,
Peñuelas, J
in
acid phosphatase
,
Acid soils
,
Agronomy. Soil science and plant productions
2006
We conducted a field experiment simulating the warming and drought in a Mediterranean shrubland dominated by Erica multiflora and Globularia alypum with the aim to simulate the next future climate conditions predicted by the IPCC and ecophysiological models. As P is frequently a limiting nutrient in Mediterranean ecosystems, we investigated the drought and warming effects on soil phosphatases activities, soil P contents and availability, litter and leaf P concentration, and the capacity of this community to maintain soil P reserves and retain this nutrient in the ecosystem. Warming treatment increased soil and air temperature (an average of 1°C) and drought treatment decreased soil water content in one of the seasons analysed (28% in autum 2004). Warming increased (68%) the activities of soil acid phosphatases in summer and alkaline phosphatase activity (22%) in spring 2004, and increased P concentrations in E. multiflora. Instead, warming decreased P concentrations in litterfall of this same species, E. multiflora, and soil HCO₃-extractable Pi (Olsen-Pi) in some seasons, decreasing total P soil concentration (37%) after 6 years of treatment. The drought treatment did not change soil phosphatase activities, nor available Pi. The effects of climate change on soil P dynamics in Mediterranean areas will thus be strongly dependent on whether the main variable involved in the local change is warming or drought. If warming is the main change without significant changes in water availability, the increases of biological activity can accelerate plant growth, P capture by plants and increase soil-phosphatase activity, altogether decreasing P contents in soil. If drought is the main change, a reduction in P demands by plants is expected, increasing P stocks in soils.
Journal Article
Global trends in carbon sinks and their relationships with CO2 and temperature
by
Piao, S L
,
Obersteiner, M
,
Canadell, J G
in
Atmospheric models
,
Carbon dioxide
,
Carbon dioxide concentration
2019
Global net ecosystem production (NEP) from a number of atmospheric inversions and dynamic global vegetation models is analysed to attribute trends to potential drivers. CO2 is found to have a positive effect on NEP that is constrained by climate warming.
Journal Article
Climate and taxonomy underlie different elemental concentrations and stoichiometries of forest species: the optimum “biogeochemical niche”
2014
We previously hypothesised the existence of a “biogeochemical niche” occupied by each plant species. Different species should have a specific elemental composition, stoichiometry and allocation as a consequence of their particular metabolism, physiology and structure (morphology) linked to their optimal functioning under the environmental (abiotic and biotic) conditions where they have evolved. We tested this hypothesis using data from the Catalan Forestry Inventory that covers different forest groups growing under a large climatic gradient. Mediterranean species that occupy hotter–drier environments have lower leaf N, P and K concentrations than non-Mediterranean forest species. Within a determined climatic biome, different species competing in the same space have different elemental compositions and allocations linked to their taxonomical differences and their phenotypic plasticity. Gymnosperms have a proportionally higher elemental allocation to leaves than to wood, higher C concentrations, and lower N, P and K concentrations mainly in the stem and branches than angiosperms. The differences among species are linked to asymmetrical use of different elements, suggesting that the biogeochemical niche is a final expression and consequence of long-term species adaptation to particular abiotic factors, ecological role (stress tolerant, ruderal, competitor), different soil occupations and use of resources to avoid interspecific competition, and finally of a certain degree of flexibility to adapt to current environmental shifts.
Journal Article
Biomass production efficiency controlled by management in temperate and boreal ecosystems
2015
Some of the energy from photosynthesis is used in production of biomass. An analysis of plant productivity measurements reveals that site management is the main factor controlling how efficiently plants produce biomass, not fertility.
Plants acquire carbon through photosynthesis to sustain biomass production, autotrophic respiration and production of non-structural compounds for multiple purposes
1
. The fraction of photosynthetic production used for biomass production, the biomass production efficiency
2
, is a key determinant of the conversion of solar energy to biomass. In forest ecosystems, biomass production efficiency was suggested to be related to site fertility
2
. Here we present a database of biomass production efficiency from 131 sites compiled from individual studies using harvest, biometric, eddy covariance, or process-based model estimates of production. The database is global, but dominated by data from Europe and North America. We show that instead of site fertility, ecosystem management is the key factor that controls biomass production efficiency in terrestrial ecosystems. In addition, in natural forests, grasslands, tundra, boreal peatlands and marshes, biomass production efficiency is independent of vegetation, environmental and climatic drivers. This similarity of biomass production efficiency across natural ecosystem types suggests that the ratio of biomass production to gross primary productivity is constant across natural ecosystems. We suggest that plant adaptation results in similar growth efficiency in high- and low-fertility natural systems, but that nutrient influxes under managed conditions favour a shift to carbon investment from the belowground flux of non-structural compounds to aboveground biomass.
Journal Article
Identification and quantification of organic aerosol from cooking and other sources in Barcelona using aerosol mass spectrometer data
2012
PM1 (particulate matter with an aerodynamic diameter <1 μm) non-refractory components and black carbon were measured continuously together with additional air quality and atmospheric parameters at an urban background site in Barcelona, Spain, during March 2009 (campaign DAURE, Determination of the sources of atmospheric Aerosols in Urban and Rural Environments in the western Mediterranean). Positive matrix factorization (PMF) was conducted on the organic aerosol (OA) data matrix measured by an aerosol mass spectrometer, on both unit mass (UMR) and high resolution (HR) data. Five factors or sources could be identified: LV-OOA (low-volatility oxygenated OA), related to regional, aged secondary OA; SV-OOA (semi-volatile oxygenated OA), a fresher oxygenated OA; HOA (hydrocarbon-like OA, related to traffic emissions); BBOA (biomass burning OA) from domestic heating or agricultural biomass burning activities; and COA (cooking OA). LV-OOA contributed 28% to OA, SV-OOA 27%, COA 17%, HOA 16%, and BBOA 11%. The COA HR spectrum contained substantial signal from oxygenated ions (O:C: 0.21) whereas the HR HOA spectrum had almost exclusively contributions from chemically reduced ions (O:C: 0.03). If we assume that the carbon in HOA is fossil while that in COA and BBOA is modern, primary OA in Barcelona contains a surprisingly high fraction (59%) of non-fossil carbon. This paper presents a method for estimating cooking organic aerosol in ambient datasets based on the fractions of organic mass fragments at m/z 55 and 57: their data points fall into a V-shape in a scatter plot, with strongly influenced HOA data aligned to the right arm and strongly influenced COA data points aligned to the left arm. HR data show that this differentiation is mainly driven by the oxygen-containing ions C3H3O+ and C3H5O+, even though their contributions to m/z 55 and 57 are low compared to the reduced ions C4H7+ and C4H9+. A simple estimation method based on the markers m/z 55, 57, and 44 is developed here and allows for a first-order-estimation of COA in urban air. This study emphasizes the importance of cooking activities for ambient air quality and confirms the importance of chemical composition measurements with a high mass and time resolution.
Journal Article
Nutrient availability as the key regulator of global forest carbon balance
by
Vicca, S.
,
Ciais, P.
,
Obersteiner, M.
in
631/158/2454
,
704/158/2454
,
Biological and medical sciences
2014
A synthesis of findings from 92 forests in different climate zones reveals that nutrient availability plays a crucial role in determining forest carbon balance, primarily through its influence on respiration rates. These findings challenge the validity of assumptions used in most global coupled carbon-cycle climate models.
Forests strongly affect climate through the exchange of large amounts of atmospheric CO
2
(ref.
1
). The main drivers of spatial variability in net ecosystem production (NEP) on a global scale are, however, poorly known. As increasing nutrient availability increases the production of biomass per unit of photosynthesis
2
and reduces heterotrophic
3
respiration in forests, we expected nutrients to determine carbon sequestration in forests. Our synthesis study of 92 forests in different climate zones revealed that nutrient availability indeed plays a crucial role in determining NEP and ecosystem carbon-use efficiency (CUEe; that is, the ratio of NEP to gross primary production (GPP)). Forests with high GPP exhibited high NEP only in nutrient-rich forests (CUEe = 33 ± 4%; mean ± s.e.m.). In nutrient-poor forests, a much larger proportion of GPP was released through ecosystem respiration, resulting in lower CUEe (6 ± 4%). Our finding that nutrient availability exerts a stronger control on NEP than on carbon input (GPP) conflicts with assumptions of nearly all global coupled carbon cycle–climate models, which assume that carbon inputs through photosynthesis drive biomass production and carbon sequestration. An improved global understanding of nutrient availability would therefore greatly improve carbon cycle modelling and should become a critical focus for future research.
Journal Article