MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Climate and taxonomy underlie different elemental concentrations and stoichiometries of forest species: the optimum “biogeochemical niche”
Climate and taxonomy underlie different elemental concentrations and stoichiometries of forest species: the optimum “biogeochemical niche”
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Climate and taxonomy underlie different elemental concentrations and stoichiometries of forest species: the optimum “biogeochemical niche”
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Climate and taxonomy underlie different elemental concentrations and stoichiometries of forest species: the optimum “biogeochemical niche”
Climate and taxonomy underlie different elemental concentrations and stoichiometries of forest species: the optimum “biogeochemical niche”

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Climate and taxonomy underlie different elemental concentrations and stoichiometries of forest species: the optimum “biogeochemical niche”
Climate and taxonomy underlie different elemental concentrations and stoichiometries of forest species: the optimum “biogeochemical niche”
Journal Article

Climate and taxonomy underlie different elemental concentrations and stoichiometries of forest species: the optimum “biogeochemical niche”

2014
Request Book From Autostore and Choose the Collection Method
Overview
We previously hypothesised the existence of a “biogeochemical niche” occupied by each plant species. Different species should have a specific elemental composition, stoichiometry and allocation as a consequence of their particular metabolism, physiology and structure (morphology) linked to their optimal functioning under the environmental (abiotic and biotic) conditions where they have evolved. We tested this hypothesis using data from the Catalan Forestry Inventory that covers different forest groups growing under a large climatic gradient. Mediterranean species that occupy hotter–drier environments have lower leaf N, P and K concentrations than non-Mediterranean forest species. Within a determined climatic biome, different species competing in the same space have different elemental compositions and allocations linked to their taxonomical differences and their phenotypic plasticity. Gymnosperms have a proportionally higher elemental allocation to leaves than to wood, higher C concentrations, and lower N, P and K concentrations mainly in the stem and branches than angiosperms. The differences among species are linked to asymmetrical use of different elements, suggesting that the biogeochemical niche is a final expression and consequence of long-term species adaptation to particular abiotic factors, ecological role (stress tolerant, ruderal, competitor), different soil occupations and use of resources to avoid interspecific competition, and finally of a certain degree of flexibility to adapt to current environmental shifts.