Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
23
result(s) for
"Pechmann, Sebastian"
Sort by:
Evolutionary conservation of codon optimality reveals hidden signatures of cotranslational folding
2013
Rare or nonoptimal codons that cause ribosomes to pause have been suggested to be important determinants of cotranslational folding. A revised translational efficiency scale, which considers tRNA abundance as well as codon usage and codon-tRNA interaction, now suggests a correlation between optimal or nonoptimal codon usage and secondary structure of the nascent polypeptide.
The choice of codons can influence local translation kinetics during protein synthesis. Whether codon preference is linked to cotranslational regulation of polypeptide folding remains unclear. Here, we derive a revised translational efficiency scale that incorporates the competition between tRNA supply and demand. Applying this scale to ten closely related yeast species, we uncover the evolutionary conservation of codon optimality in eukaryotes. This analysis reveals universal patterns of conserved optimal and nonoptimal codons, often in clusters, which associate with the secondary structure of the translated polypeptides independent of the levels of expression. Our analysis suggests an evolved function for codon optimality in regulating the rhythm of elongation to facilitate cotranslational polypeptide folding, beyond its previously proposed role of adapting to the cost of expression. These findings establish how mRNA sequences are generally under selection to optimize the cotranslational folding of corresponding polypeptides.
Journal Article
Single-cell expression predicts neuron-specific protein homeostasis networks
2024
The protein homeostasis network keeps proteins in their correct shapes and avoids unwanted aggregation. In turn, the accumulation of aberrantly misfolded proteins has been directly associated with the onset of ageing-associated neurodegenerative diseases such as Alzheimer's and Parkinson's. However, a detailed and rational understanding of how protein homeostasis is achieved in health, and how it can be targeted for therapeutic intervention in diseases remains missing. Here, large-scale single-cell expression data from the Allen Brain Map are analysed to investigate the transcription regulation of the core protein homeostasis network across the human brain. Remarkably, distinct expression profiles suggest specialized protein homeostasis networks with systematic adaptations in excitatory neurons, inhibitory neurons and non-neuronal cells. Moreover, several chaperones and Ubiquitin ligases are found transcriptionally coregulated with genes important for synapse formation and maintenance, thus linking protein homeostasis to the regulation of neuronal function. Finally, evolutionary analyses highlight the conservation of an elevated interaction density in the chaperone network, suggesting that one of the most exciting aspects of chaperone action may yet be discovered in their collective action at the systems level. More generally, our work highlights the power of computational analyses for breaking down complexity and gaining complementary insights into fundamental biological problems.
Journal Article
Local slowdown of translation by nonoptimal codons promotes nascent-chain recognition by SRP in vivo
by
Pechmann, Sebastian
,
Frydman, Judith
,
Chartron, Justin W
in
631/114
,
631/337/470/1463
,
631/337/470/1981
2014
Analyses of yeast codon usage and ribosome profiling data reveal a nonoptimal codon cluster in the mRNAs of ER-targeted proteins, downstream of the SRP-binding site, that would slow down translation to promote SRP interaction.
The genetic code allows most amino acids a choice of optimal and nonoptimal codons. We report that synonymous codon choice is tuned to promote interaction of nascent polypeptides with the signal recognition particle (SRP), which assists in protein translocation across membranes. Cotranslational recognition by the SRP
in vivo
is enhanced when mRNAs contain nonoptimal codon clusters 35–40 codons downstream of the SRP-binding site, the distance that spans the ribosomal polypeptide exit tunnel. A local translation slowdown upon ribosomal exit of SRP-binding elements in mRNAs containing these nonoptimal codon clusters is supported experimentally by ribosome profiling analyses in yeast. Modulation of local elongation rates through codon choice appears to kinetically enhance recognition by ribosome-associated factors. We propose that cotranslational regulation of nascent-chain fate may be a general constraint shaping codon usage in the genome.
Journal Article
Hsp90 shapes protein and RNA evolution to balance trade-offs between protein stability and aggregation
2018
Acquisition of mutations is central to evolution; however, the detrimental effects of most mutations on protein folding and stability limit protein evolvability. Molecular chaperones, which suppress aggregation and facilitate polypeptide folding, may alleviate the effects of destabilizing mutations thus promoting sequence diversification. To illuminate how chaperones can influence protein evolution, we examined the effect of reduced activity of the chaperone Hsp90 on poliovirus evolution. We find that Hsp90 offsets evolutionary trade-offs between protein stability and aggregation. Lower chaperone levels favor variants of reduced hydrophobicity and protein aggregation propensity but at a cost to protein stability. Notably, reducing Hsp90 activity also promotes clusters of codon-deoptimized synonymous mutations at inter-domain boundaries, likely to facilitate cotranslational domain folding. Our results reveal how a chaperone can shape the sequence landscape at both the protein and RNA levels to harmonize competing constraints posed by protein stability, aggregation propensity, and translation rate on successful protein biogenesis.
It remains poorly understood whether and how chaperones control protein evolution. Here the authors show how the chaperone Hsp90 shapes the sequence space of its client, poliovirus protein P1, at the polypeptide and RNA level to balance the evolutionary trade-offs between protein stability, aggregation and translation rate.
Journal Article
Functional network motifs defined through integration of protein-protein and genetic interactions
2022
Cells are enticingly complex systems. The identification of feedback regulation is critically important for understanding this complexity. Network motifs defined as small graphlets that occur more frequently than expected by chance have revolutionized our understanding of feedback circuits in cellular networks. However, with their definition solely based on statistical over-representation, network motifs often lack biological context, which limits their usefulness. Here, we define functional network motifs (FNMs) through the systematic integration of genetic interaction data that directly inform on functional relationships between genes and encoded proteins. Occurring two orders of magnitude less frequently than conventional network motifs, we found FNMs significantly enriched in genes known to be functionally related. Moreover, our comprehensive analyses of FNMs in yeast showed that they are powerful at capturing both known and putative novel regulatory interactions, thus suggesting a promising strategy towards the systematic identification of feedback regulation in biological networks. Many FNMs appeared as excellent candidates for the prioritization of follow-up biochemical characterization, which is a recurring bottleneck in the targeting of complex diseases. More generally, our work highlights a fruitful avenue for integrating and harnessing genomic network data.
Journal Article
Interplay between Chaperones and Protein Disorder Promotes the Evolution of Protein Networks
by
Pechmann, Sebastian
,
Frydman, Judith
in
Biology and Life Sciences
,
Computational Biology
,
Escherichia coli
2014
Evolution is driven by mutations, which lead to new protein functions but come at a cost to protein stability. Non-conservative substitutions are of interest in this regard because they may most profoundly affect both function and stability. Accordingly, organisms must balance the benefit of accepting advantageous substitutions with the possible cost of deleterious effects on protein folding and stability. We here examine factors that systematically promote non-conservative mutations at the proteome level. Intrinsically disordered regions in proteins play pivotal roles in protein interactions, but many questions regarding their evolution remain unanswered. Similarly, whether and how molecular chaperones, which have been shown to buffer destabilizing mutations in individual proteins, generally provide robustness during proteome evolution remains unclear. To this end, we introduce an evolutionary parameter λ that directly estimates the rate of non-conservative substitutions. Our analysis of λ in Escherichia coli, Saccharomyces cerevisiae, and Homo sapiens sequences reveals how co- and post-translationally acting chaperones differentially promote non-conservative substitutions in their substrates, likely through buffering of their destabilizing effects. We further find that λ serves well to quantify the evolution of intrinsically disordered proteins even though the unstructured, thus generally variable regions in proteins are often flanked by very conserved sequences. Crucially, we show that both intrinsically disordered proteins and highly re-wired proteins in protein interaction networks, which have evolved new interactions and functions, exhibit a higher λ at the expense of enhanced chaperone assistance. Our findings thus highlight an intricate interplay of molecular chaperones and protein disorder in the evolvability of protein networks. Our results illuminate the role of chaperones in enabling protein evolution, and underline the importance of the cellular context and integrated approaches for understanding proteome evolution. We feel that the development of λ may be a valuable addition to the toolbox applied to understand the molecular basis of evolution.
Journal Article
Physicochemical principles that regulate the competition between functional and dysfunctional association of proteins
by
Levy, Emmanuel D
,
Vendruscolo, Michele
,
Tartaglia, Gian Gaetano
in
Aggregation
,
Amino Acid Sequence
,
amino acid sequences
2009
To maintain protein homeostasis, a variety of quality control mechanisms, such as the unfolded protein response and the heat shock response, enable proteins to fold and to assemble into functional complexes while avoiding the formation of aberrant and potentially harmful aggregates. We show here that a complementary contribution to the regulation of the interactions between proteins is provided by the physicochemical properties of their amino acid sequences. The results of a systematic analysis of the protein-protein complexes in the Protein Data Bank (PDB) show that interface regions are more prone to aggregate than other surface regions, indicating that many of the interactions that promote the formation of functional complexes, including hydrophobic and electrostatic forces, can potentially also cause abnormal intermolecular association. We also show, however, that aggregation-prone interfaces are prevented from triggering uncontrolled assembly by being stabilized into their functional conformations by disulfide bonds and salt bridges. These results indicate that functional and dysfunctional association of proteins are promoted by similar forces but also that they are closely regulated by the presence of specific interactions that stabilize native states.
Journal Article
Defining the Specificity of Cotranslationally Acting Chaperones by Systematic Analysis of mRNAs Associated with Ribosome-Nascent Chain Complexes
by
Frydman, Judith
,
Hogan, Daniel J.
,
Pechmann, Sebastian
in
Biology
,
Cell Fractionation
,
Centrifugation, Density Gradient
2011
Polypeptides exiting the ribosome must fold and assemble in the crowded environment of the cell. Chaperones and other protein homeostasis factors interact with newly translated polypeptides to facilitate their folding and correct localization. Despite the extensive efforts, little is known about the specificity of the chaperones and other factors that bind nascent polypeptides. To address this question we present an approach that systematically identifies cotranslational chaperone substrates through the mRNAs associated with ribosome-nascent chain-chaperone complexes. We here focused on two Saccharomyces cerevisiae chaperones: the Signal Recognition Particle (SRP), which acts cotranslationally to target proteins to the ER, and the Nascent chain Associated Complex (NAC), whose function has been elusive. Our results provide new insights into SRP selectivity and reveal that NAC is a general cotranslational chaperone. We found surprising differential substrate specificity for the three subunits of NAC, which appear to recognize distinct features within nascent chains. Our results also revealed a partial overlap between the sets of nascent polypeptides that interact with NAC and SRP, respectively, and showed that NAC modulates SRP specificity and fidelity in vivo. These findings give us new insight into the dynamic interplay of chaperones acting on nascent chains. The strategy we used should be generally applicable to mapping the specificity, interplay, and dynamics of the cotranslational protein homeostasis network.
Journal Article
Pervasive convergent evolution and extreme phenotypes define chaperone requirements of protein homeostasis
2019
Maintaining protein homeostasis is an essential requirement for cell and organismal viability. An elaborate regulatory system within cells, the protein homeostasis network, safeguards that proteins are correctly folded and functional. At the heart of this regulatory system lies a class of specialized protein quality control enzymes called chaperones that are tasked with assisting proteins in their folding, avoiding aggregation and degradation. Failure and decline of protein homeostasis are directly associated with conditions of aging and aging-related neurodegeneration. However, it is not clear what tips the balance of protein homeostasis and leads to onset of aging and diseases. Here, using a comparative genomics approach we report general principles of maintaining protein homeostasis across the eukaryotic tree of life. Expanding a previous study of 16 eukaryotes to the quantitative analysis of 216 eukaryotic genomes, we find a strong correlation between the composition of eukaryotic chaperone networks and genome complexity that is distinct for different species kingdoms. Organisms with pronounced phenotypes clearly buck this trend. Northobranchius furzeri, the shortest-lived vertebrate and a widely used model for fragile protein homeostasis, is found to be chaperone limited while Heterocephalus glaber as the longestlived rodent and thus an especially robust organism is characterized by above-average numbers of chaperones. Strikingly, the relative size of chaperone networks is found to generally correlate with longevity in Metazoa. Our results thus indicate that the balance in protein homeostasis may be a key variable in explaining organismal robustness.
Journal Article
Single-cell expression predicts neuronspecific protein homeostasis networks
2024
The protein homeostasis network keeps proteins in their correct shapes and avoids unwanted aggregation. In turn, the accumulation of aberrantly misfolded proteins has been directly associated with the onset of ageingassociated neurodegenerative diseases such as Alzheimer's and Parkinson's. However, a detailed and rational understanding of how protein homeostasis is achieved in health, and how it can be targeted for therapeutic intervention in diseases remains missing. Here, large-scale single-cell expression data from the Allen Brain Map are analysed to investigate the transcription regulation of the core protein homeostasis network across the human brain. Remarkably, distinct expression profiles suggest specialized protein homeostasis networks with systematic adaptations in excitatory neurons, inhibitory neurons and non-neuronal cells. Moreover, several chaperones and Ubiquitin ligases are found transcriptionally coregulated with genes important for synapse formation and maintenance, thus linking protein homeostasis to the regulation of neuronal function. Finally, evolutionary analyses highlight the conservation of an elevated interaction density in the chaperone network, suggesting that one of the most exciting aspects of chaperone action may yet be discovered in their collective action at the systems level. More generally, our work highlights the power of computational analyses for breaking down complexity and gaining complementary insights into fundamental biological problems.
Journal Article