Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
8
result(s) for
"Pekarek, Brandon T"
Sort by:
Oxytocin and Sensory Network Plasticity
by
Pekarek, Brandon T.
,
Hunt, Patrick J.
,
Arenkiel, Benjamin R.
in
Behavior
,
Brain research
,
disease
2020
An essential characteristic of nervous systems is their capacity to reshape functional connectivity in response to physiological and environmental cues. Endogenous signals, including neuropeptides, governs nervous system plasticity. Particularly, oxytocin has been recognized for its role in mediating activity-dependent circuit changes. These oxytocin-dependent changes occur at the synaptic level and consequently shape the cellular composition of circuits. Here we discuss recent advances that illustrate how oxytocin functions to reshape neural circuitry in response to environmental changes. Excitingly, recent findings pave the way for promising therapeutic applications of oxytocin to treat neurodevelopmental and neuropsychiatric diseases.
Journal Article
Tau polarizes an aging transcriptional signature to excitatory neurons and glia
by
Pekarek, Brandon T
,
Dhindsa, Justin
,
Liu, Zhandong
in
Aging
,
Aging - genetics
,
Alzheimer Disease - metabolism
2023
Aging is a major risk factor for Alzheimer’s disease (AD), and cell-type vulnerability underlies its characteristic clinical manifestations. We have performed longitudinal, single-cell RNA-sequencing in Drosophila with pan-neuronal expression of human tau, which forms AD neurofibrillary tangle pathology. Whereas tau- and aging-induced gene expression strongly overlap (93%), they differ in the affected cell types. In contrast to the broad impact of aging, tau-triggered changes are strongly polarized to excitatory neurons and glia. Further, tau can either activate or suppress innate immune gene expression signatures in a cell-type-specific manner. Integration of cellular abundance and gene expression pinpoints nuclear factor kappa B signaling in neurons as a marker for cellular vulnerability. We also highlight the conservation of cell-type-specific transcriptional patterns between Drosophila and human postmortem brain tissue. Overall, our results create a resource for dissection of dynamic, age-dependent gene expression changes at cellular resolution in a genetically tractable model of tauopathy.
Journal Article
Activation of basal forebrain-to-lateral habenula circuitry drives reflexive aversion and suppresses feeding behavior
2022
Environmental cues and internal states such as mood, reward, or aversion directly influence feeding behaviors beyond homeostatic necessity. The hypothalamus has been extensively investigated for its role in homeostatic feeding. However, many of the neural circuits that drive more complex, non-homeostatic feeding that integrate valence and sensory cues (such as taste and smell) remain unknown. Here, we describe a basal forebrain (BF)-to-lateral habenula (LHb) circuit that directly modulates non-homeostatic feeding behavior. Using viral-mediated circuit mapping, we identified a population of glutamatergic neurons within the BF that project to the LHb, which responds to diverse sensory cues, including aversive and food-related odors. Optogenetic activation of BF-to-LHb circuitry drives robust, reflexive-like aversion. Furthermore, activation of this circuitry suppresses the drive to eat in a fasted state. Together, these data reveal a role of basal forebrain glutamatergic neurons in modulating LHb-associated aversion and feeding behaviors by sensing environmental cues.
Journal Article
Comparative analysis of AAV serotypes for transduction of olfactory sensory neurons
by
Pekarek, Brandon T.
,
Arenkiel, Benjamin R.
,
Jia, Johnathan D.
in
Axon guidance
,
Central nervous system
,
Comparative analysis
2025
Olfactory sensory neurons within the nasal epithelium detect volatile odorants and relay odor information to the central nervous system. Unlike other sensory inputs, olfactory sensory neurons interface with the external environment and project their axons directly into the central nervous system. The use of adeno-associated viruses to target these neurons has garnered interest for applications in gene therapy, probing olfactory sensory neuron biology, and modeling disease. To date, there is no consensus on the optimal AAV serotype for efficient and selective transduction of olfactory sensory neurons in vivo . Here we utilized serial confocal imaging and single-nucleus RNA sequencing to evaluate the efficacy of 11 different AAV serotypes in transducing murine olfactory sensory neurons via non-invasive nasal inoculation. Our results reveal that AAV1, while highly effective, exhibited broad tropism, whereas AAV-DJ/8 showed the greatest specificity for olfactory sensory neurons.
Journal Article
Tau polarizes an aging transcriptional signature to excitatory neurons and glia
2022
Aging is a major risk factor for Alzheimer disease (AD), and cell-type vulnerability underlies its characteristic clinical manifestations. We have performed longitudinal, single-cell RNA-sequencing in Drosophila with pan-neuronal expression of human tau, which forms AD neurofibrillary tangle pathology. Whereas tau- and aging-induced gene expression strongly overlap (93%), they differ in the affected cell types. In contrast to the broad impact of aging, tau-triggered changes are strongly polarized to excitatory neurons and glia. Further, tau can either activate or suppress innate immune gene expression signatures in a cell type-specific manner. Integration of cellular abundance and gene expression pinpoints Nuclear Factor Kappa B signaling as a potential marker for neuronal vulnerability. We also highlight the conservation of cell type-specific transcriptional patterns between Drosophila and human postmortem brain tissue. Overall, our results create a resource for dissection of dynamic, age-dependent gene expression changes at cellular resolution in a genetically tractable model of tauopathy.Competing Interest StatementThe authors have declared no competing interest.Footnotes* https://doi.org/10.7303/syn35798807.1
Comparative Analysis of AAV Serotypes for Transduction of Olfactory Sensory Neurons
Olfactory sensory neurons within the nasal epithelium detect volatile odorants and relay odor information to the central nervous system. Unlike other sensory inputs, olfactory sensory neurons interface with the external environment and project their axons directly into the central nervous system. The use of adeno-associated viruses to target these neurons has garnered interest for applications in gene therapy, probing olfactory sensory neuron biology, and modeling disease. To date, there is no consensus on the optimal AAV serotype for efficient and selective transduction of olfactory sensory neurons in vivo. Here we utilized serial confocal imaging and single-nucleus RNA sequencing to evaluate the efficacy of 11 different AAV serotypes in transducing murine olfactory sensory neurons via non-invasive nasal inoculation. Our results reveal that AAV1, while highly effective, exhibited broad tropism, whereas AAV-DJ/8 showed the greatest specificity for olfactory sensory neurons.
Olfactory bulb astrocytes mediate sensory circuit processing through Sox9 in the mouse brain
2021
The role of transcription factors during astrocyte development and their subsequent effects on neuronal development has been well studied. Less is known about astrocytes contributions towards circuits and behavior in the adult brain. Astrocytes play important roles in synaptic development and modulation, however their contributions towards neuronal sensory function and maintenance of neuronal circuit architecture remain unclear. Here, we show that loss of the transcription factor
Sox9
results in both anatomical and functional changes in adult mouse olfactory bulb (OB) astrocytes, affecting sensory processing. Indeed, astrocyte-specific deletion of
Sox9
in the OB results in decreased odor detection thresholds and discrimination and it is associated with aberrant neuronal sensory response maps. At functional level, loss of astrocytic
Sox9
impairs the electrophysiological properties of mitral and tufted neurons. RNA-sequencing analysis reveals widespread changes in the gene expression profiles of OB astrocytes. In particular, we observe reduced GLT-1 expression and consequential alterations in glutamate transport. Our findings reveal that astrocytes are required for physiological sensory processing and we identify astrocytic
Sox9
as an essential transcriptional regulator of mature astrocyte function in the mouse OB.
Astrocytes can regulate neuronal activity. Here, the authors show that astrocyte-specific deletion of Sox9 results in impaired neuronal sensory processing in the mouse adult olfactory bulb.
Journal Article
Target specific functions of EPL interneurons in olfactory circuits
2019
Inhibitory interneurons are integral to sensory processing, yet revealing their cell type-specific roles in sensory circuits remains an ongoing focus. To Investigate the mouse olfactory system, we selectively remove GABAergic transmission from a subset of olfactory bulb interneurons, EPL interneurons (EPL-INs), and assay odor responses from their downstream synaptic partners — tufted cells and mitral cells. Using a combination of in vivo electrophysiological and imaging analyses, we find that inactivating this single node of inhibition leads to differential effects in magnitude, reliability, tuning width, and temporal dynamics between the two principal neurons. Furthermore, tufted and not mitral cell responses to odor mixtures become more linearly predictable without EPL-IN inhibition. Our data suggest that olfactory bulb interneurons, through exerting distinct inhibitory functions onto their different synaptic partners, play a significant role in the processing of odor information.
The precise cell-type specific role of inhibitory interneurons in regulating sensory responses in the olfactory bulb is not known. Here, the authors report that removing GABAergic inhibition from one layer differentially affects response dynamics of the two main output cell types and changes odor mixture processing.
Journal Article