Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
75 result(s) for "Penfold, Christopher A."
Sort by:
Stella modulates transcriptional and endogenous retrovirus programs during maternal-to-zygotic transition
The maternal-to-zygotic transition (MZT) marks the period when the embryonic genome is activated and acquires control of development. Maternally inherited factors play a key role in this critical developmental process, which occurs at the 2-cell stage in mice. We investigated the function of the maternally inherited factor Stella (encoded by Dppa3) using single-cell/embryo approaches. We show that loss of maternal Stella results in widespread transcriptional mis-regulation and a partial failure of MZT. Strikingly, activation of endogenous retroviruses (ERVs) is significantly impaired in Stella maternal/zygotic knockout embryos, which in turn leads to a failure to upregulate chimeric transcripts. Amongst ERVs, MuERV-L activation is particularly affected by the absence of Stella, and direct in vivo knockdown of MuERV-L impacts the developmental potential of the embryo. We propose that Stella is involved in ensuring activation of ERVs, which themselves play a potentially key role during early development, either directly or through influencing embryonic gene expression. When a sperm cell fertilizes an egg cell, this creates a single-celled embryo called a zygote that will go on to divide repeatedly throughout development. The zygote inherits the contents of the egg including many important proteins that initially control how the embryo develops. In mice, the embryo takes over control of development once the zygote has divided to form a two-celled embryo. This transition of control destroys the maternally inherited proteins and selectively activates zygotic genes and some DNA sequences called transposable elements that evolved from virus DNA. One of the proteins inherited from the egg cell is called Stella. Embryos that lack Stella die within the first few cell divisions, which suggests that the protein is needed during the earliest stages of development. However, it is not clear what Stella's role in the early embryo is. Huang, Kim et al. decided to investigate how Stella might affect the genes that are switched on during development by using a technique called RNA-seq to study egg cells and early embryos from mice. Two-celled embryos that lacked Stella could not activate a number of genes that produce proteins that are critical for development. They also failed to activate a group of transposable elements called endogenous retroviruses. In particular, a lack of Stella significantly reduced the activity of an endogenous retrovirus called MuERV-L. Further experiments showed that MuERV-L is needed for normal embryonic development, and so suggests that transposable elements play important roles in this process. Future studies will aim to explore these roles in more detail. It will also be important to identify the genes that Stella targets in embryos, and to investigate the roles that similar maternally inherited proteins play in early embryonic development.
Comparative transcriptome analysis in Arabidopsis ein2/ore3 and ahk3/ore12 mutants during dark-induced leaf senescence
Ethylene and cytokinin play antagonistic roles in the regulation of leaf senescence via EIN2/ORE3-dependent transcriptional regulation of stress responses and AHK3/ORE12-dependent transcriptional maintenance of the translational machinery, respectively. Abstract Leaf senescence involves degenerative but active biological processes that require balanced regulation of pro- and anti-senescing activities. Ethylene and cytokinin are major antagonistic regulatory hormones that control the timing and progression rate of leaf senescence. To identify the roles of these hormones in the regulation of leaf senescence in Arabidopsis, global gene expression profiles in detached leaves of the wild type, an ethylene-insensitive mutant (ein2/ore3), and a constitutive cytokinin response mutant (ahk3/ore12) were investigated during dark-induced leaf senescence. Comparative transcriptome analyses revealed that genes involved in oxidative or salt stress response were preferentially altered in the ein2/ore3 mutant, whereas genes involved in ribosome biogenesis were affected in the ahk3/ore12 mutant during dark-induced leaf senescence. Similar results were also obtained for developmental senescence. Through extensive molecular and physiological analyses in ein2/ore3 and ahk3/ore12 during dark-induced leaf senescence, together with responses when treated with cytokinin and ethylene inhibitor, we conclude that ethylene acts as a senescence-promoting factor via the transcriptional regulation of stress-related responses, whereas cytokinin acts as an anti-senescing agent by maintaining cellular activities and preserving the translational machinery. These findings provide new insights into how plants utilize two antagonistic hormones, ethylene and cytokinin, to regulate the molecular programming of leaf senescence.
Building a stem cell-based primate uterus
The uterus is the organ for embryo implantation and fetal development. Most current models of the uterus are centred around capturing its function during later stages of pregnancy to increase the survival in pre-term births. However, in vitro models focusing on the uterine tissue itself would allow modelling of pathologies including endometriosis and uterine cancers, and open new avenues to investigate embryo implantation and human development. Motivated by these key questions, we discuss how stem cell-based uteri may be engineered from constituent cell parts, either as advanced self-organising cultures, or by controlled assembly through microfluidic and print-based technologies.Bergmann et al. discuss the construction of synthetic uteri to model the earliest stages of human embryogenesis and associated pathologies. They highlight the constituent components from which a synthetic uterus may be engineered, propose a modular approach to assembling synthetic uteri and discuss how these technologies can shed light on implantation failure and uterine pathologies.
Spatial profiling of early primate gastrulation in utero
Gastrulation controls the emergence of cellular diversity and axis patterning in the early embryo. In mammals, this transformation is orchestrated by dynamic signalling centres at the interface of embryonic and extraembryonic tissues 1 – 3 . Elucidating the molecular framework of axis formation in vivo is fundamental for our understanding of human development 4 – 6 and to advance stem-cell-based regenerative approaches 7 . Here we illuminate early gastrulation of marmoset embryos in utero using spatial transcriptomics and stem-cell-based embryo models. Gaussian process regression-based 3D transcriptomes delineate the emergence of the anterior visceral endoderm, which is hallmarked by conserved (HHEX , LEFTY2 , LHX1 ) and primate-specific ( POSTN , SDC4 , FZD5 ) factors. WNT signalling spatially coordinates the formation of the primitive streak in the embryonic disc and is counteracted by SFRP1 and SFRP2 to sustain pluripotency in the anterior domain. Amnion specification occurs at the boundaries of the embryonic disc through ID1 , ID2 and ID3 in response to BMP signalling, providing a developmental rationale for amnion differentiation of primate pluripotent stem cells (PSCs). Spatial identity mapping demonstrates that primed marmoset PSCs exhibit the highest similarity to the anterior embryonic disc, whereas naive PSCs resemble the preimplantation epiblast. Our 3D transcriptome models reveal the molecular code of lineage specification in the primate embryo and provide an in vivo reference to decipher human development. 3D transcriptomes reveal the molecular code of lineage specification in the primate embryo and provide an in vivo reference to decipher human development.
Modelling transcriptional networks in leaf senescence
The process of leaf senescence is induced by an extensive range of developmental and environmental signals and controlled by multiple, cross-linking pathways, many of which overlap with plant stress-response signals. Elucidation of this complex regulation requires a step beyond a traditional one-gene-at-a-time analysis. Application of a more global analysis using statistical and mathematical tools of systems biology is an approach that is being applied to address this problem. A variety of modelling methods applicable to the analysis of current and future senescence data are reviewed and discussed using some senescence-specific examples. Network modelling with a senescence transcriptome time course followed by testing prediction with gene-expression data illustrates the application of systems biology tools.
Modeling Meiotic Chromosomes Indicates a Size Dependent Contribution of Telomere Clustering and Chromosome Rigidity to Homologue Juxtaposition
Meiosis is the cell division that halves the genetic component of diploid cells to form gametes or spores. To achieve this, meiotic cells undergo a radical spatial reorganisation of chromosomes. This reorganisation is a prerequisite for the pairing of parental homologous chromosomes and the reductional division, which halves the number of chromosomes in daughter cells. Of particular note is the change from a centromere clustered layout (Rabl configuration) to a telomere clustered conformation (bouquet stage). The contribution of the bouquet structure to homologous chromosome pairing is uncertain. We have developed a new in silico model to represent the chromosomes of Saccharomyces cerevisiae in space, based on a worm-like chain model constrained by attachment to the nuclear envelope and clustering forces. We have asked how these constraints could influence chromosome layout, with particular regard to the juxtaposition of homologous chromosomes and potential nonallelic, ectopic, interactions. The data support the view that the bouquet may be sufficient to bring short chromosomes together, but the contribution to long chromosomes is less. We also find that persistence length is critical to how much influence the bouquet structure could have, both on pairing of homologues and avoiding contacts with heterologues. This work represents an important development in computer modeling of chromosomes, and suggests new explanations for why elucidating the functional significance of the bouquet by genetics has been so difficult.
High-Resolution Temporal Profiling of Transcripts during Arabidopsis Leaf Senescence Reveals a Distinct Chronology of Processes and Regulation
Leaf senescence is an essential developmental process that impacts dramatically on crop yields and involves altered regulation of thousands of genes and many metabolic and signaling pathways, resulting in major changes in the leaf. The regulation of senescence is complex, and although senescence regulatory genes have been characterized, there is little information on how these function in the global control of the process. We used microarray analysis to obtain a highresolution time-course profile of gene expression during development of a single leaf over a 3-week period to senescence. A complex experimental design approach and a combination of methods were used to extract high-quality replicated data and to identify differentially expressed genes. The multiple time points enable the use of highly informative clustering to reveal distinct time points at which signaling and metabolic pathways change. Analysis of motif enrichment, as well as comparison of transcription factor (TF) families showing altered expression over the time course, identify clear groups of TFs active at different stages of leaf development and senescence. These data enable connection of metabolic processes, signaling pathways, and specific TF activity, which will underpin the development of network models to elucidate the process of senescence.
Sequential enhancer state remodelling defines human germline competence and specification
Germline–soma segregation is a fundamental event during mammalian embryonic development. Here we establish the epigenetic principles of human primordial germ cell (hPGC) development using in vivo hPGCs and stem cell models recapitulating gastrulation. We show that morphogen-induced remodelling of mesendoderm enhancers transiently confers the competence for hPGC fate, but further activation favours mesoderm and endoderm fates. Consistently, reducing the expression of the mesendodermal transcription factor OTX2 promotes the PGC fate. In hPGCs, SOX17 and TFAP2C initiate activation of enhancers to establish a core germline programme, including the transcriptional repressor PRDM1 and pluripotency factors POU5F1 and NANOG. We demonstrate that SOX17 enhancers are the critical components in the regulatory circuitry of germline competence. Furthermore, activation of upstream cis -regulatory elements by an optimized CRISPR activation system is sufficient for hPGC specification. We reveal an enhancer-linked germline transcription factor network that provides the basis for the evolutionary divergence of mammalian germlines. Tang et al. report that sequential epigenetic remodelling of mesendoderm enhancers is required for the segregation of human primordial germ cell and mesendodermal cell fates.
Age‐related and species‐specific methylation changes in the protein‐coding marmoset sperm epigenome
The sperm epigenome is thought to affect the developmental programming of the resulting embryo, influencing health and disease in later life. Age‐related methylation changes in the sperm of old fathers may mediate the increased risks for reproductive and offspring medical problems. The impact of paternal age on sperm methylation has been extensively studied in humans and, to a lesser extent, in rodents and cattle. Here, we performed a comparative analysis of paternal age effects on protein‐coding genes in the human and marmoset sperm methylomes. The marmoset has gained growing importance as a non‐human primate model of aging and age‐related diseases. Using reduced representation bisulfite sequencing, we identified age‐related differentially methylated transcription start site (ageTSS) regions in 204 marmoset and 27 human genes. The direction of methylation changes was the opposite, increasing with age in marmosets and decreasing in humans. None of the identified ageTSS was differentially methylated in both species. Although the average methylation levels of all TSS regions were highly correlated between marmosets and humans, with the majority of TSS being hypomethylated in sperm, more than 300 protein‐coding genes were endowed with species‐specifically (hypo)methylated TSS. Several genes of the glycosphingolipid (GSL) biosynthesis pathway, which plays a role in embryonic stem cell differentiation and regulation of development, were hypomethylated (<5%) in human and fully methylated (>95%) in marmoset sperm. The expression levels and patterns of defined sets of GSL genes differed considerably between human and marmoset pre‐implantation embryo stages and blastocyst tissues, respectively. Using reduced representation bisulfite sequencing, we identified age‐related differentially methylated transcription start site regions in 204 marmoset and 27 human genes. All identified ageTSS were species‐specific, suggesting flexible evolutionary epigenetic adaptations. Although overall, the TSS methylation levels of orthologous genes were highly correlated in both species, there were also notable between‐species differences, that is, in sperm methylation and postzygotic expression of genes for glycosphingolipid biosynthesis.
Transcriptional Dynamics Driving MAMP-Triggered Immunity and Pathogen Effector-Mediated Immunosuppression in Arabidopsis Leaves Following Infection with Pseudomonas syringae pv tomato DC3000
Transcriptional reprogramming is integral to effective plant defense. Pathogen effectors act transcriptionally and posttranscriptionally to suppress defense responses. A major challenge to understanding disease and defense responses is discriminating between transcriptional reprogramming associated with microbial-associated molecular pattern (MAMP)-triggered immunity (MTI) and that orchestrated by effectors. A high-resolution time course of genome-wide expression changes following challenge with Pseudomonas syringae pv tomato DC3000 and the nonpathogenic mutant strain DC3000hrpA- allowed us to establish causal links between the activities of pathogen effectors and suppression of MTI and infer with high confidence a range of processes specifically targeted by effectors. Analysis of this information-rich data set with a range of computational tools provided insights into the earliest transcriptional events triggered by effector delivery, regulatory mechanisms recruited, and biological processes targeted. We show that the majority of genes contributing to disease or defense are induced within 6 h postinfection, significantly before pathogen multiplication. Suppression of chloroplast-associated genes is a rapid MAMP-triggered defense response, and suppression of genes involved in chromatin assembly and induction of ubiquitin-related genes coincide with pathogen-induced abscisic acid accumulation. Specific combinations of promoter motifs are engaged in fine-tuning the MTI response and active transcriptional suppression at specific promoter configurations by P. syringae.