Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
36
result(s) for
"Peters, Janny L"
Sort by:
Multi-Level Interactions Between Heat Shock Factors, Heat Shock Proteins, and the Redox System Regulate Acclimation to Heat
by
Rieu, Ivo
,
Peters, Janny L.
,
Driedonks, Nicky
in
Abiotic stress
,
Acclimation
,
Acclimatization
2015
High temperature has become a global concern because it seriously affects the growth and reproduction of plants. Exposure of plant cells to high temperatures result in cellular damage and can even lead to cell death. Part of the damage can be ascribed to the action of reactive oxygen species (ROS), which accumulate during abiotic stresses such as heat stress. ROS are toxic and can modify other biomacromolecules including membrane lipids, DNA, and proteins. In order to protect the cells, ROS scavenging is essential. In contrast with their inherent harms, ROS also function as signaling molecules, inducing stress tolerance mechanisms. This review examines the evidence for crosstalk between the classical heat stress response, which consists of heat shock factors (HSFs) and heat shock proteins (HSPs), with the ROS network at multiple levels in the heat response process. Heat stimulates HSF activity directly, but also indirectly via ROS. HSFs in turn stimulate the expression of HSP chaperones and also affect ROS scavenger gene expression. In the short term, HSFs repress expression of superoxide dismutase scavenger genes via induction of miRNA398, while they also activate scavenger gene expression and stabilize scavenger protein activity via HSP induction. We propose that these contrasting effects allow for the boosting of the heat stress response at the very onset of the stress, while preventing subsequent oxidative damage. The described model on HSFs, HSPs, ROS, and ROS scavenger interactions seems applicable to responses to stresses other than heat and may explain the phenomenon of crossacclimation.
Journal Article
HAWAIIAN SKIRT controls size and floral organ number by modulating CUC1 and CUC2 expression
by
Szecsi, Judit
,
Roberts, Jeremy A
,
Reproduction et développement des plantes (RDP) ; École normale supérieure de Lyon (ENS de Lyon) ; Université de Lyon-Université de Lyon-Institut National de la Recherche Agronomique (INRA)-Université Claude Bernard Lyon 1 (UCBL) ; Université de Lyon-Centre National de la Recherche Scientifique (CNRS)
in
Abscission
,
Arabidopsis
,
Arabidopsis - anatomy & histology
2017
The Arabidopsis thaliana F-box gene HAWAIIAN SKIRT (HWS) affects organ growth and the timing of floral organ abscission. The loss-of-function hws-1 mutant exhibits fused sepals and increased organ size. To understand the molecular mechanisms of HWS during plant development, we mutagenized hws-1 seeds with ethylmethylsulphonate (EMS) and screened for mutations suppressing hws-1 associated phenotypes. We isolated the shs1/ hws-1 (suppressor of hws-1) mutant in which hws-1 sepal fusion phenotype was suppressed. The shs1/hws-1 mutant carries a G -> A nucleotide substitution in the MIR164 binding site of CUP-SHAPED COTYLEDON 1 (CUC1) mRNA. CUC1 and CUP-SHAPED COTYLEDON 2 (CUC2) transcript levels were altered in shs1, renamed cuc1-1D, and in hws-1 mutant. Genetic interaction analyses using single, double and triple mutants of cuc1-1D, cuc2-1D (a CUC2 mutant similar to cuc1-1D), and hws-1, demonstrate that HWS, CUC1 and CUC2 act together to control floral organ number. Loss of function of HWS is associated with larger petal size due to alterations in cell proliferation and mitotic growth, a role shared with the CUC1 gene.
Journal Article
Thrips Resistance Screening Is Coming of Age: Leaf Position and Ontogeny Are Important Determinants of Leaf-Based Resistance in Pepper
by
Peters, Janny L.
,
van de Vondervoort, Joep A. H.
,
Visschers, Isabella G. S.
in
Capsicum
,
crop breeding
,
Crops
2019
is a genus containing important crop species, many of which severely suffer from thrips infestation. Thrips feeding damages leaves and fruits, and often results in virus infections. Only a few insecticides are still effective against thrips, underlining the importance of finding natural resistance in crops.
is a perennial plant which is usually cultivated for several months, during which time the fruits are harvested. From the young vegetative stage to the mature fruit bearing stage, the plants are at risk to thrips infestation. Constitutive resistance to thrips over the entire ontogenetic development is therefore a key trait for a more sustainable and successful cultivation of the hot and sweet pepper. In addition to ontogeny, leaf position can affect the level of thrips resistance. Pest resistance levels are known to differ between young and old leaves. To our knowledge, no studies have explicitly considered ontogeny and leaf position when screening for constitutive resistance to thrips in
. In this study we analyze whether ontogeny and leaf position affect leaf-based resistance to
and
, in 40
accessions, comprising five different species. Our results show that resistance to both thrips species in
varies with ontogenetic stage. This variation in resistance among ontogenetic stages was not consistent among the accessions. However, accessions with constitutive resistance in both the flowering and fruit ripening stage could be identified. In addition, we found that thrips resistance is overall similar at different leaf positions within the ontogenetic stage. This implies that resistance mechanisms, such as defense compounds, are constitutively present at sufficient levels on all leaf positions. Finally, we found that resistance to
and resistance to
were not correlated. This indicates that leaf-based resistance in
is thrips species-specific. Because of the variation in resistance over ontogeny, identifying
accessions with resistance over their entire lifespan is challenging. For resistance screening, accounting for leaf position may be less of a concern. To identify the defense mechanisms responsible for thrips resistance, it is important to further analyze and compare resistant and susceptible accessions.
Journal Article
The Arabidopsis thaliana F-box gene HAWAIIAN SKIRT is a new player in the microRNA pathway
by
Szecsi, Judit
,
Roberts, Jeremy A
,
Reproduction et développement des plantes (RDP) ; École normale supérieure de Lyon (ENS de Lyon) ; Université de Lyon-Université de Lyon-Institut National de la Recherche Agronomique (INRA)-Université Claude Bernard Lyon 1 (UCBL) ; Université de Lyon-Centre National de la Recherche Scientifique (CNRS)
in
Arabidopsis
,
Arabidopsis - genetics
,
Arabidopsis - growth & development
2017
In Arabidopsis, the F-box HAWAIIAN SKIRT (HWS) protein is important for organ growth. Loss of function of HWS exhibits pleiotropic phenotypes including sepal fusion. To dissect the HWS role, we EMS-mutagenized hws-1 seeds and screened for mutations that suppress hws-1 associated phenotypes. We identified shs-2 and shs-3 (suppressor of hws-2 and 3) mutants in which the sepal fusion phenotype of hws-1 was suppressed. shs-2 and shs-3 (renamed hst-23/hws-1 and hst-24/hws-1) carry transition mutations that result in premature terminations in the plant homolog of Exportin-5 HASTY (HST), known to be important in miRNA biogenesis, function and transport. Genetic crosses between hws-1 and mutant lines for genes in the miRNA pathway also suppress the phenotypes associated with HWS loss of function, corroborating epistatic relations between the miRNA pathway genes and HWS. In agreement with these data, accumulation of miRNA is modified in HWS loss or gain of function mutants. Our data propose HWS as a new player in the miRNA pathway, important for plant growth.
Journal Article
Exploring Thrips Preference and Resistance in Flowers, Leaves, and Whole Plants of Ten Capsicum Accessions
2023
Capsicum species grown for pepper production suffer severely from thrips damage, urging the identification of natural resistance. Resistance levels are commonly assessed on leaves. However, Capsicum plants are flower-bearing during most of the production season, and thrips also feed on pollen and flower tissues. In order to obtain a comprehensive estimate of elements contributing to thrips resistance, flower tissues should be considered as well. Therefore, we assessed resistance to Frankliniella occidentalis in flowers, leaves, and whole plants of ten Capsicum accessions. Using choice assays, we found that thrips prefer flowers of certain accessions over others. The preference of adult thrips for flowers was positively correlated to trehalose and fructose concentration in anthers as well as to pollen quantity. Resistance measured on leaf discs and thrips population development on whole plants was significantly and positively correlated. Leaf-based resistance thus translates to reduced thrips population development. Results of the flower assays were not significantly correlated with resistance in leaves or on whole plants. This suggests that both leaves and flowers represent a different part of the resistance spectrum and should both be considered for understanding whole plant resistance and the identification of resistant Capsicum varieties.
Journal Article
Slug Feeding Triggers Dynamic Metabolomic and Transcriptomic Responses Leading to Induced Resistance in Solanum dulcamara
by
Peters, Janny L.
,
Huber, Heidrun
,
Steppuhn, Anke
in
Abscisic acid
,
Anthocyanins
,
defense signaling
2020
Induced plant responses to insect herbivores are well studied, but we know very little about responses to gastropod feeding. We aim to identify the temporal dynamics of signaling- and defense-related plant responses after slug feeding in relation to induced resistance. We exposed
plants to feeding by the gray field slug (GFS;
) for different periods and tested disks of local and systemic leaves in preference assays. Induced responses were analyzed using metabolomics and transcriptomics. GFS feeding induced local and systemic responses. Slug feeding for 72 h more strongly affected the plant metabolome than 24 h feeding. It increased the levels of a glycoalkaloid (solasonine), phenolamides, anthocyanins, and trypsin protease inhibitors as well as polyphenol oxidase activity. Phytohormone and transcriptome analyses revealed that jasmonic acid, abscisic acid and salicylic acid signaling were activated. GFS feeding upregulated more genes than that it downregulated. The response directly after feeding was more than five times higher than after an additional 24 h without feeding. Our research showed that GFS, like most chewing insects, triggers anti-herbivore defenses by activating defense signaling pathways, resulting in increased resistance to further slug feeding. Slug herbivory may therefore impact other herbivores in the community.
Journal Article
Metabolomics of Thrips Resistance in Pepper (Capsicum spp.) Reveals Monomer and Dimer Acyclic Diterpene Glycosides as Potential Chemical Defenses
by
Visschers, Isabella G S
,
van Dam, Nicole M
,
Peters, Janny L
in
Capsicum
,
Chemical defense
,
Developmental stages
2019
The development of pesticide resistance in insects and recent bans on pesticides call for the identification of natural sources of resistance in crops. Here, we used natural variation in pepper (Capsicum spp.) resistance combined with an untargeted metabolomics approach to detect secondary metabolites related to thrips (Frankliniella occidentalis) resistance. Using leaf disc choice assays, we tested 11 Capsicum accessions of C. annuum and C. chinense in both vegetative and flowering stages for thrips resistance. Metabolites in the leaves of these 11 accessions were analyzed using LC-MS based untargeted metabolomics. The choice assays showed significant differences among the accessions in thrips feeding damage. The level of resistance depended on plant developmental stage. Metabolomics analyses showed differences in metabolomes among the Capsicum species and plant developmental stages. Moreover, metabolomic profiles of resistant and susceptible accessions differed. Monomer and dimer acyclic diterpene glycosides (capsianosides) were pinpointed as metabolites that were related to thrips resistance. Sucrose and malonylated flavone glycosides were related to susceptibility. To our knowledge, this is the first time that dimer capsianosides of pepper have been linked to insect resistance. Our results show the potential of untargeted metabolomics as a tool for discovering metabolites that are important in plant – insect interactions.
Journal Article
Glycoalkaloid composition explains variation in slug resistance in Solanum dulcamara
2018
In natural environments, plants have to deal with a wide range of different herbivores whose communities vary in time and space. It is believed that the chemical diversity within plant species has mainly arisen from selection pressures exerted by herbivores. So far, the effects of chemical diversity on plant resistance have mostly been assessed for arthropod herbivores. However, also gastropods, such as slugs, can cause extensive damage to plants. Here we investigate to what extent individual Solanum dulcamara plants differ in their resistance to slug herbivory and whether this variation can be explained by differences in secondary metabolites. We performed a series of preference assays using the grey field slug (Deroceras reticulatum) and S. dulcamara accessions from eight geographically distinct populations from the Netherlands. Significant and consistent variation in slug preference was found for individual accessions within and among populations. Metabolomic analyses showed that variation in steroidal glycoalkaloids (GAs) correlated with slug preference; accessions with high GA levels were consistently less damaged by slugs. One, strongly preferred, accession with particularly low GA levels contained high levels of structurally related steroidal compounds. These were conjugated with uronic acid instead of the glycoside moieties common for Solanum GAs. Our results illustrate how intraspecific variation in steroidal glycoside profiles affects resistance to slug feeding. This suggests that also slugs should be considered as important drivers in the co-evolution between plants and herbivores.
Journal Article
Gastropods and Insects Prefer Different Solanum dulcamara Chemotypes
2019
Solanum dulcamara (Bittersweet nightshade) shows significant intraspecific variation in glycoalkaloid (GA) composition and concentration. We previously showed that constitutive differences in overall GA levels are correlated with feeding preference of the grey field slug (GFS; Deroceras reticulatum). One particularly preferred accession, ZD11, contained low GA levels, but high levels of previously unknown structurally related uronic acid conjugated compounds (UACs). Here we test whether different slug species as well as insect herbivores show similar feeding preferences among six S. dulcamara accessions with different GA chemotypes. In addition, we investigate whether slug feeding can lead to induced changes in the chemical composition and affect later arriving herbivores. A leaf disc assay using greenhouse-grown plants showed that three slug species similarly preferred accessions with low GA levels. Untargeted metabolomic analyses showed that previous slug feeding consistently increased the levels of N-caffeoyl-putrescine and a structurally related metabolite, but not the levels of GAs and UACs. Slug-induced responses only affected slug preference in one accession. A common garden experiment using the same six accessions revealed that ZD11 received the highest natural gastropod feeding damage, but suffered the lowest damage by specialist flea beetles. The latter preferred to feed on accessions with high GA levels. Our study indicates that different selection pressures imposed by generalist gastropods and specialist insects may explain part of the observed chemical diversity in S. dulcamara.
Journal Article
A Physical Amplified Fragment-Length Polymorphism Map of Arabidopsis
by
Pia Neyt
,
Peters, Janny L.
,
Hans Constandt
in
Arabidopsis
,
Arabidopsis - genetics
,
Arabidopsis thaliana
2001
We have positioned amplified fragment-length polymorphism (AFLP) markers directly on the genome sequence of a complex organism, Arabidopsis, by combining gel-based AFLP analysis with in silico restriction fragment analysis using the published genome sequence. For placement of the markers, we used information on restriction fragment size, four selective nucleotides, and the rough genetic position of the markers as deduced from the analysis of a limited number of Columbia (Col)/Landsberg (Ler) recombinant inbred lines. This approach allows for exact physical positioning of markers as opposed to the statistical localization resulting from traditional genetic mapping procedures. In addition, it is fast because no extensive segregation analysis is needed. In principle, the method can be applied to all organisms for which a complete or nearly complete genome sequence is available. We have located 1,267 AFLP Col/Ler markers resulting from 256 SacI+2, MseI+2 primer combinations to a physical position on the Arabidopsis genome. The positioning was verified by sequence analysis of 70 markers and by segregation analysis of two leaf-form mutants. Approximately 50% of the mapped Col/Ler AFLP markers can be used for segregation analysis in Col/C24, Col/Wassilewskija, or Col/Cape Verde Islands crosses. We present data on one such cross: the localization of a viviparous-like mutant segregating in a Col/C24 cross.
Journal Article