Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
37
result(s) for
"Petrovec, Miroslav"
Sort by:
Zika Virus Associated with Microcephaly
2016
Zika virus is an emerging infectious disease that is spreading rapidly through the Americas. A major concern is the association with birth defects, especially microcephaly. This report shows evidence of Zika virus in the fetal brain.
ZIKV, an emerging mosquito-borne flavivirus, was initially isolated from a rhesus monkey in the Zika forest in Uganda in 1947.
1
It is transmitted by various species of aedes mosquitoes. After the first human ZIKV infection, sporadic cases were reported in Southeast Asia and sub-Saharan Africa.
2
ZIKV was responsible for the outbreak in Yap Island of Micronesia in 2007 and for major epidemics in French Polynesia, New Caledonia, the Cook Islands, and Easter Island in 2013 and 2014.
3
,
4
In 2015, there was a dramatic increase in reports of ZIKV infection in the Americas. Brazil is the most affected country, with . . .
Journal Article
The Role of Human Coronaviruses in Children Hospitalized for Acute Bronchiolitis, Acute Gastroenteritis, and Febrile Seizures: A 2-Year Prospective Study
by
Mrvič, Tatjana
,
Grosek, Štefan
,
Petrovec, Miroslav
in
Acute Disease
,
Biology and life sciences
,
Bronchiolitis
2016
Human coronaviruses (HCoVs) are associated with a variety of clinical presentations in children, but their role in disease remains uncertain. The objective of our prospective study was to investigate HCoVs associations with various clinical presentations in hospitalized children up to 6 years of age. Children hospitalized with acute bronchiolitis (AB), acute gastroenteritis (AGE), or febrile seizures (FS), and children admitted for elective surgical procedures (healthy controls) were included in the study. In patients with AB, AGE, and FS, a nasopharyngeal (NP) swab and blood sample were obtained upon admission and the follow-up visit 14 days later, whereas in children with AGE a stool sample was also acquired upon admission; in healthy controls a NP swab and stool sample were taken upon admission. Amplification of polymerase 1b gene was used to detect HCoVs in the specimens. HCoVs-positive specimens were also examined for the presence of several other viruses. HCoVs were most often detected in children with FS (19/192, 9.9%, 95% CI: 6-15%), followed by children with AGE (19/218, 8.7%, 95% CI: 5.3-13.3%) and AB (20/308, 6.5%, 95% CI: 4.0-9.8%). The presence of other viruses was a common finding, most frequent in the group of children with AB (19/20, 95%, 95% CI: 75.1-99.8%), followed by FS (10/19, 52.6%, 95% CI: 28.9-75.6%) and AGE (7/19, 36.8%, 95% CI: 16.3-61.6%). In healthy control children HCoVs were detected in 3/156 (1.9%, 95% CI: 0.4-5.5%) NP swabs and 1/150 (0.7%, 95% CI: 0.02-3.3%) stool samples. It seems that an etiological role of HCoVs is most likely in children with FS, considering that they had a higher proportion of positive HCoVs results than patients with AB and those with AGE, and had the highest viral load; however, the co-detection of other viruses was 52.6%.
ClinicalTrials.gov NCT00987519.
Journal Article
Influenza A, Influenza B, human respiratory syncytial virus and SARSCoV-2 molecular diagnostics and epidemiology in the post COVID-19 era
2024
Background
The concurrent circulation of SARS-CoV-2 with other respiratory viruses is unstoppable and represents a new diagnostic reality for clinicians and clinical microbiology laboratories. Multiplexed molecular testing on automated platforms that focus on the simultaneous detection of multiple respiratory viruses in a single tube is a useful approach for current and future diagnosis of respiratory infections in the clinical setting.
Methods
Two time periods were included in the study: from February to April 2022, an early 2022 period, during the gradual lifting of COVID-19 prevention measures in the country, and from October 2022 to April 2023, the 2022/23 respiratory infections season. We analysed a total of 1,918 samples in the first period and 18,131 respiratory samples in the second period using a multiplex molecular assay for the simultaneous detection of Influenza A (Flu-A), Influenza B (Flu-B), Human Respiratory Syncytial Virus (HRSV) and SARS-CoV-2.
Results
The results from early 2022 showed a strong dominance of SARS-CoV-2 infections with 1,267/1,918 (66.1%) cases. Flu-A was detected in 30/1,918 (1.6%) samples, HRSV in 14/1,918 (0.7%) samples, and Flu-B in 2/1,918 (0.1%) samples. Flu-A/SARS-CoV-2 co-detections were observed in 11/1,267 (0.9%) samples, and HRSV/SARS-CoV-2 co-detection in 5/1,267 (0.4%) samples. During the 2022/23 winter respiratory season, SARS-CoV-2 was detected in 1,738/18,131 (9.6%), Flu-A in 628/18,131 (3.5%), Flu-B in 106/18,131 (0.6%), and HRSV in 505/18,131 (2.8%) samples. Interestingly, co-detections were present to a similar extent as in early 2022.
Conclusion
The results show that the multiplex molecular approach is a valuable tool for the simultaneous laboratory diagnosis of SARS-CoV-2, Flu-A/B, and HRSV in hospitalized and outpatients. Infections with Flu-A/B, and HRSV occurred shortly after the COVID-19 control measures were lifted, so a strong reoccurrence of various respiratory infections and co-detections in the post COVID-19 period was to be expected.
Journal Article
Seasonality and Genotype Diversity of Human Rhinoviruses during an Eight-Year Period in Slovenia
by
Berginc, Nataša
,
Petrovec, Miroslav
,
Prosenc Trilar, Katarina
in
Algorithms
,
autumn
,
Biological diversity
2024
Due to the high socioeconomic burden of rhinoviruses, the development of prevention and treatment strategies is of high importance. Understanding the epidemiological and clinical features of rhinoviruses is essential in order to address these issues. Our study aimed to define the seasonality and molecular epidemiology of rhinoviruses in Slovenia. Over a period of eight years, a total of 20,425 patients from sentinel primary healthcare settings and sentinel hospitals were examined for a panel of respiratory viruses in the national programme for the surveillance of influenza-like illnesses and acute respiratory infections. The patients were from all age groups and had respiratory infections of various severity. Infection with a rhinovirus was confirmed using an RT-rPCR in 1834 patients, and 1480 rhinoviruses were genotyped. The molecular analysis was linked to demographical and meteorological data. We confirmed the year-round circulation of rhinoviruses with clear seasonal cycles, resulting in two seasonal waves with peaks in spring and autumn. High levels of genotype variability and co-circulation were confirmed between and within seasons and were analysed in terms of patient age, the patient source reflecting disease severity, and meteorological factors. Our study provides missing scientific information on the genotype diversity of rhinoviruses in Slovenia. As most previous investigations focused on exclusive segments of the population, such as children or hospitalised patients, and for shorter study periods, our study, with its design, size and length, contributes complementary aspects and new evidence-based knowledge to the regional and global understanding of rhinovirus seasonality and molecular epidemiology.
Journal Article
Changes in HRSV Epidemiology but Not Circulating Variants in Hospitalized Children due to the Emergence of SARS-CoV-2
2023
This study assesses the circulation of human respiratory syncytial virus (HRSV) genotypes before, during, and toward the end of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic in children and determines the influence of the pandemic on HRSV circulation patterns and evolution. Phylogenetic analysis of the hypervariable glycoprotein G gene was performed on 221/261 (84.7%) HRSV-positive samples and shows two separated clusters, one belonging to HRSV-A (129/221) and another to HRSV-B (92/221). All Slovenian HRSV-A strains contained the 72-nucleotide-long duplicated region in the attachment glycoprotein G gene and were classified as lineage GA2.3.5. All Slovenian HRSV-B strains similarly contained a 60-nucleotide-long duplicated region in the attachment glycoprotein G gene and were classified as lineage GB5.0.5a. During the 3-year period (2018–2021) covered by the study, no significant differences were observed within strains detected before the SARS-CoV-2 pandemic, during it, and after the implementation of nonpharmaceutical preventive measures. Slovenian HRSV-A strains seem to be more diverse than HRSV-B strains. Therefore, further whole-genome investigations would be required for better monitoring of the long-term impact of SARS-CoV-2 endemic circulation and the formation of new HRSV lineages and epidemiological patterns.
Journal Article
Genetic Characterisation and Comparison of Three Human Coronaviruses (HKU1, OC43, 229E) from Patients and Bovine Coronavirus (BCoV) from Cattle with Respiratory Disease in Slovenia
by
Černe, Danijela
,
Paller, Tomislav
,
Petrovec, Miroslav
in
Amino acids
,
BCoV
,
Bovine coronavirus
2021
Coronaviruses (CoV) are widely distributed pathogens of human and animals and can cause mild or severe respiratory and gastrointestinal disease. Antigenic and genetic similarity of some CoVs within the Betacoronavirus genus is evident. Therefore, for the first time in Slovenia, we investigated the genetic diversity of partial 390-nucleotides of RNA-dependent-RNA polymerase gene (RdRp) for 66 human (HCoV) and 24 bovine CoV (BCoV) positive samples, collected between 2010 and 2016 from human patients and cattle with respiratory disease. The characterized CoV strains belong to four different clusters, in three separate human clusters HCoV-HKU1 (n = 34), HCoV-OC43 (n = 31) and HCoV 229E (n = 1) and bovine grouping only as BCoVs (n = 24). BCoVs from cattle and HCoV-OC43 were genetically the most closely related and share 96.4–97.1% nucleotide and 96.9–98.5% amino acid identity.
Journal Article
Outbreak of Human Metapneumovirus Infection in Zoo, Slovenia
by
Grmek-Košnik, Irena
,
Kastelic, Marjan
,
Petrovec, Miroslav
in
Animals
,
Asthma
,
bronchopneumonia
2020
We report a case of human metapneumovirus infection that spread from humans to chimpanzees and back to humans. Bronchopneumonia developed in 4 of 6 members of a chimpanzee family, and 2 subsequently died. The chimpanzees' keeper also became ill. Sequencing showed 100% identity between virus sequences from chimpanzees and the keeper.
Journal Article
Evaluation of Two Broadly Used Commercial Methods for Detection of Respiratory Viruses with a Recently Added New Target for Detection of SARS-CoV-2
by
Petrovec, Miroslav
,
Jevšnik Virant, Monika
,
Uršič, Tina
in
Automation
,
Biochemical assays
,
Comparative analysis
2022
The clinical symptoms caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are nonspecific and can be associated with most other respiratory viruses that cause acute respiratory tract infections (ARI). Because the clinical differentiation of COVID-19 patients from those with other respiratory viruses is difficult, the evaluation of automated methods to detect important respiratory viruses together with SARS-CoV-2 seems necessary. Therefore, this study compares two molecular assays for the detection of respiratory viruses, including SARS-CoV-2: the Respiratory Viruses 16-Well Assay (AusDiagnostics, Pty Ltd., Mascot, Australia) and the Allplex™ RV Essential Assay coupled with the Allplex™-nCoV Assay (Seegene Inc., Seoul, Korea). The two methods (AusDiagnostics and AlplexTM-nCoV Assay SARS-CoV-2) had 98.6% agreement with the reference method, cobas 6800, for the detection of SARS-CoV-2. Agreement between the AusDiagnostics assay and the AlplexTM RV Essential Assay for the detection of seven respiratory viruses was 99%. In our experience, the Respiratory Viruses 16-Well Assay proved to be the most valuable and useful medium-throughput method for simultaneous detection of important respiratory viruses and SARS-CoV-2. The main advantages of the method are high specificity for all targets included and their simultaneous detection and medium throughput with the option of having multiple instruments provide a constant run.
Journal Article
Characterization of Biomarker Levels in Crimean–Congo Hemorrhagic Fever and Hantavirus Fever with Renal Syndrome
2019
Hemorrhagic fever with renal syndrome (HFRS) and Crimean-Congo hemorrhagic fever (CCHF) are important viral hemorrhagic fevers (VHF), especially in the Balkan region. Infections with Dobrava or Puumala orthohantavirus and Crimean-Congo hemorrhagic fever orthonairovirus can vary from a mild, nonspecific febrile illness, to a severe disease with a fatal outcome. The pathogenesis of both diseases is poorly understood, but it has been suggested that a host’s immune mechanism might influence the pathogenesis of the diseases and survival. The aim of our study is to characterize cytokine response in patients with VHF in association with the disease progression and viral load. Forty soluble mediators of the immune response, coagulation, and endothelial dysfunction were measured in acute serum samples in 100 HFRS patients and 70 CCHF patients. HFRS and CCHF patients had significantly increased levels of IL-6, IL-12p70, IP-10, INF-γ, TNF-α, GM-CSF, MCP-3, and MIP-1b in comparison to the control group. Interestingly, HFRS patients had higher concentrations of serum MIP-1α, MIP-1β, which promote activation of macrophages and NK cells. HFRS patients had increased concentrations of IFN-γ and TNF-α, while CCHF patients had significantly higher concentrations of IFN-α and IL-8. In both, CCHF and HFRS patients’ viral load significantly correlated with IP-10. Patients with fatal outcome had significantly elevated concentrations of IL-6, IFN-α2 and MIP-1α, while GRO-α, chemokine related to activation of neutrophils and basophils, was downregulated. Our study provided a comprehensive characterization of biomarkers released in the acute stages of CCHF and HFRS.
Journal Article
Comparison of Lymphocyte Populations in Patients With Dobrava or Puumala orthohantavirus Infection
by
Kopitar, Andreja Nataša
,
Petrovec, Miroslav
,
Ihan, Alojz
in
CD25 antigen
,
CD69 antigen
,
Cell activation
2020
Hemorrhagic fever with renal syndrome (HFRS), caused by Dobrava (DOBV) and Puumala (PUUV) orthohantaviruses, is an endemic disease in Slovenia. DOBV is mainly responsible for a more severe disease, whereas PUUV usually causes a milder form. Therefore, the aim of our study was to determine whether any differences in lymphocyte population in patients infected with these two viruses exist. Mononuclear cells from peripheral blood (PBMCs) were isolated from DOBV or PUUV infected patients and different lymphocyte subpopulations were analyzed with flow cytometry. Decreased concentrations of lymphocyte subpopulation were observed in DOBV and in PUUV infected patients compared with a healthy control, which was especially evident in DOBV infected patients. The lower values of T cells are likely due to the extravasation of the activated cells from the circulation to the infected tissue. Higher percentage of NK cells were detected in DOBV infected patients in comparison to PUUV infected patients, which could be associated with a more severe HFRS caused by DOBV. PUUV infected patients had a significantly higher concentration of activated T cell subsets, expressing markers CD25, CD69, and HLA-DR in comparison to DOBV infected patients. Higher activation of T cell subsets in PUUV infected patients could be a contributor to a milder HFRS. Further studies are necessary to elucidate the relation between the protective and the harmful role of activated lymphocytes subsets in HFRS pathogenesis.
Journal Article