Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
10
result(s) for
"Pomp, Oz"
Sort by:
A monoastral mitotic spindle determines lineage fate and position in the mouse embryo
2022
During mammalian development, the first asymmetric cell divisions segregate cells into inner and outer positions of the embryo to establish the pluripotent and trophectoderm lineages. Typically, polarity components differentially regulate the mitotic spindle via astral microtubule arrays to trigger asymmetric division patterns. However, early mouse embryos lack centrosomes, the microtubule-organizing centres (MTOCs) that usually generate microtubule asters. Thus, it remains unknown whether spindle organization regulates lineage segregation. Here we find that heterogeneities in cell polarity in the early 8-cell-stage mouse embryo trigger the assembly of a highly asymmetric spindle organization. This spindle arises in an unusual modular manner, forming a single microtubule aster from an apically localized, non-centrosomal MTOC, before joining it to the rest of the spindle apparatus. When fully assembled, this ‘monoastral’ spindle triggers spatially asymmetric division patterns to segregate cells into inner and outer positions. Moreover, the asymmetric inheritance of spindle components causes differential cell polarization to determine pluripotent versus trophectoderm lineage fate.
Pomp et al. show that specification of inner cell mass versus trophectoderm depends on a monoastral spindle that drives asymmetric cell division patterns, arguing against a stochastic inner–outer lineage segregation in the mouse embryo.
Journal Article
The nuclear lamina couples mechanical forces to cell fate in the preimplantation embryo via actin organization
2023
During preimplantation development, contractile forces generated at the apical cortex segregate cells into inner and outer positions of the embryo, establishing the inner cell mass (ICM) and trophectoderm. To which extent these forces influence ICM-trophectoderm fate remains unresolved. Here, we found that the nuclear lamina is coupled to the cortex via an F-actin meshwork in mouse and human embryos. Actomyosin contractility increases during development, upregulating Lamin-A levels, but upon internalization cells lose their apical cortex and downregulate Lamin-A. Low Lamin-A shifts the localization of actin nucleators from nucleus to cytoplasm increasing cytoplasmic F-actin abundance. This results in stabilization of Amot, Yap phosphorylation and acquisition of ICM over trophectoderm fate. By contrast, in outer cells, Lamin-A levels increase with contractility. This prevents Yap phosphorylation enabling Cdx2 to specify the trophectoderm. Thus, forces transmitted to the nuclear lamina control actin organization to differentially regulate the factors specifying lineage identity.
Contractile forces are key to sorting the embryonic inner cell mass from the extraembryonic trophectoderm. Here they show that Lamin-A links changes in mechanical forces to cell fate specification, enabling Yap-Cdx2 signaling in outer, but not inner cells.
Journal Article
Pretreatment with IL-15 and IL-18 rescues natural killer cells from granzyme B-mediated apoptosis after cryopreservation
2024
Human natural killer (NK) cell-based therapies are under assessment for treating various cancers, but cryopreservation reduces both the recovery and function of NK cells, thereby limiting their therapeutic feasibility. Using cryopreservation protocols optimized for T cells, here we find that ~75% of NK cells die within 24 h post-thaw, with the remaining cells displaying reduced cytotoxicity. Using CRISPR-Cas9 gene editing and confocal microscopy, we find that cryopreserved NK cells largely die via apoptosis initiated by leakage of granzyme B from cytotoxic vesicles. Pretreatment of NK cells with a combination of Interleukins-15 (IL-15) and IL-18 prior to cryopreservation improves NK cell recovery to ~90-100% and enables equal tumour control in a xenograft model of disseminated Raji cell lymphoma compared to non-cryopreserved NK cells. The mechanism of IL-15 and IL-18-induced protection incorporates two mechanisms: a transient reduction in intracellular granzyme B levels via degranulation, and the induction of antiapoptotic genes.
Natural killer (NK) cells are assessed for various therapies, but sub-optimal cryopreservation dampens their clinical feasibility. Here the authors show that pretreating human NK cells with IL-15/IL-18 prior to cryopreservation improves NK cell post-thaw viability and functions, potentially via anti-apoptosis gene induction and granzyme B degranulation.
Journal Article
A mitochondrial surveillance mechanism activated by SRSF2 mutations in hematologic malignancies
2024
Splicing factor mutations are common in myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML), but how they alter cellular functions is unclear. We show that the pathogenic SRSF2P95H/+ mutation disrupts the splicing of mitochondrial mRNAs, impairs mitochondrial complex I function, and robustly increases mitophagy. We also identified a mitochondrial surveillance mechanism by which mitochondrial dysfunction modifies splicing of the mitophagy activator PINK1 to remove a poison intron, increasing the stability and abundance of PINK1 mRNA and protein. SRSF2P95H-induced mitochondrial dysfunction increased PINK1 expression through this mechanism, which is essential for survival of SRSF2P95H/+ cells. Inhibition of splicing with a glycogen synthase kinase 3 inhibitor promoted retention of the poison intron, impairing mitophagy and activating apoptosis in SRSF2P95H/+ cells. These data reveal a homeostatic mechanism for sensing mitochondrial stress through PINK1 splicing and identify increased mitophagy as a disease marker and a therapeutic vulnerability in SRSF2P95H mutant MDS and AML.
Journal Article
TMF/ARA160 is a BC-box-containing protein that mediates the degradation of Stat3
2004
TMF/ARA160 is a Golgi resident protein whose cellular functions have not been conclusively revealed. Herein we show that TMF/ARA160 can direct the proteasomal degradation of the key cell growth regulator – Stat3. TMF/ARA160 was dispersed in the cytoplasm of myogenic C2C12 cells that were grown under low-serum conditions. The cytoplasmic distribution of TMF/ARA160 was accompanied by its transient association with the tyrosine kinase Fer and with Stat3, which underwent proteasomal degradation under those conditions. Moreover, serum deprivation induced the association of ubiquitinated proteins, with the TMF/ARA160 complex. However, TMF/ARA160 did not bind Stat1, whose cellular levels were increased in serum-starved C2C12 cells. Amino-acid sequence analysis identified a BC-box element in TMF/ARA160 that mediated the binding of this protein to elongin C. Ectopic expression of TMF/ARA160 in serum-starved C2C12 cells drove the ubiquitination and proteasomal degradation of Stat3, an effect that was not caused by TMF/ARA160 devoid of the BC-box motif. Thus, the Golgi apparatus harbors a novel BC-box-containing protein that can direct Stat3 to proteasomal degradation. Interestingly, the level of TMF/ARA160 was significantly decreased in malignant brain tumors, implying a suppressive role of that protein in tumor progression.
Journal Article
A mitochondrial surveillance mechanism activated by SRSF2 mutations in hematologic malignancies
by
Morrow, Ryan M
,
Huang, Jian
,
Abdel-Wahab, Omar
in
Cancer
,
Development and progression
,
Disease susceptibility
2024
Splicing factor mutations are common in myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML), but how they alter cellular functions is unclear. We show that the pathogenic [SRSF2.sup.P95H/+] mutation disrupts the splicing of mitochondrial mRNAs, impairs mitochondrial complex I function, and robustly increases mitophagy. We also identified a mitochondrial surveillance mechanism by which mitochondrial dysfunction modifies splicing of the mitophagy activator PINK1 to remove a poison intron, increasing the stability and abundance of PINK1 mRNA and protein. [SRSF2.sup.P95H]-induced mitochondrial dysfunction increased PINK1 expression through this mechanism, which is essential for survival of [SRSF2.sup.P95H/+] cells. Inhibition of splicing with a glycogen synthase kinase 3 inhibitor promoted retention of the poison intron, impairing mitophagy and activating apoptosis in [SRSF2.sup.P95H/+] cells. These data reveal a homeostatic mechanism for sensing mitochondrial stress through PINK1 splicing and identify increased mitophagy as a disease marker and a therapeutic vulnerability in [SRSF2.sup.P95H] mutant MDS and AML.
Journal Article
A mitochondrial surveillance mechanism activated by SRSF2 mutations in hematologic malignancies
by
Morrow, Ryan M
,
Huang, Jian
,
Abdel-Wahab, Omar
in
Acute myeloid leukemia
,
Apoptosis
,
Blood cancer
2024
Splicing factor mutations are common in myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML), but how they alter cellular functions is unclear. We show that the pathogenic SRSF2P95H/+ mutation disrupts the splicing of mitochondrial mRNAs, impairs mitochondrial complex I function, and robustly increases mitophagy. We also identified a mitochondrial surveillance mechanism by which mitochondrial dysfunction modifies splicing of the mitophagy activator PINK1 to remove a poison intron, increasing the stability and abundance of PINK1 mRNA and protein. SRSF2P95H-\\nduced mitochondrial dysfunction increased PINK1 expression through this mechanism, which is essential for survival of SRSF2P95H/+ cells. Inhibition of splicing with a glycogen synthase kinase 3 inhibitor promoted retention of the poison intron, impairing mitophagy and activating apoptosis in SRSF2P95H/+ cells. These data reveal a homeostatic mechanism for sensing mitochondrial stress through PINK1 splicing and identify increased mitophagy as a disease marker and a therapeutic vulnerability in SRSF2P95H mutant MDS and AML.
Journal Article
Katanin p80, NuMA and cytoplasmic dynein cooperate to control microtubule dynamics
2017
Human mutations in
KATNB1
(p80) cause severe congenital cortical malformations, which encompass the clinical features of both microcephaly and lissencephaly. Although p80 plays critical roles during brain development, the underlying mechanisms remain predominately unknown. Here, we demonstrate that p80 regulates microtubule (MT) remodeling in combination with NuMA (nuclear mitotic apparatus protein) and cytoplasmic dynein. We show that p80 shuttles between the nucleus and spindle pole in synchrony with the cell cycle. Interestingly, this striking feature is shared with NuMA. Importantly, p80 is essential for aster formation and maintenance
in vitro
. siRNA-mediated depletion of p80 and/or NuMA induced abnormal mitotic phenotypes in cultured mouse embryonic fibroblasts and aberrant neurogenesis and neuronal migration in the mouse embryonic brain. Importantly, these results were confirmed in p80-mutant harboring patient-derived induced pluripotent stem cells and brain organoids. Taken together, our findings provide valuable insights into the pathogenesis of severe microlissencephaly, in which p80 and NuMA delineate a common pathway for neurogenesis and neuronal migration via MT organization at the centrosome/spindle pole.
Journal Article
A mitochondrial surveillance mechanism activated by SRSF2 mutations in hematologic malignancies
2024
Splicing factor mutations are common in myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML), but how they alter cellular functions is unclear. We show that the pathogenic SRSF2P95H/+ mutation disrupts the splicing of mitochondrial mRNAs, impairs mitochondrial complex I function, and robustly increases mitophagy. We also identified a mitochondrial surveillance mechanism by which mitochondrial dysfunction modifies splicing of the mitophagy activator PINK1 to remove a poison intron, increasing the stability and abundance of PINK1 mRNA and protein. SRSF2P95H-induced mitochondrial dysfunction increased PINK1 expression through this mechanism, which is essential for survival of SRSF2P95H/+ cells. Inhibition of splicing with a glycogen synthase kinase 3 inhibitor promoted retention of the poison intron, impairing mitophagy and activating apoptosis in SRSF2P95H/+ cells. These data reveal a homeostatic mechanism for sensing mitochondrial stress through PINK1 splicing and identify increased mitophagy as a disease marker and a therapeutic vulnerability in SRSF2P95H mutant MDS and AML.Splicing factor mutations are common in myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML), but how they alter cellular functions is unclear. We show that the pathogenic SRSF2P95H/+ mutation disrupts the splicing of mitochondrial mRNAs, impairs mitochondrial complex I function, and robustly increases mitophagy. We also identified a mitochondrial surveillance mechanism by which mitochondrial dysfunction modifies splicing of the mitophagy activator PINK1 to remove a poison intron, increasing the stability and abundance of PINK1 mRNA and protein. SRSF2P95H-induced mitochondrial dysfunction increased PINK1 expression through this mechanism, which is essential for survival of SRSF2P95H/+ cells. Inhibition of splicing with a glycogen synthase kinase 3 inhibitor promoted retention of the poison intron, impairing mitophagy and activating apoptosis in SRSF2P95H/+ cells. These data reveal a homeostatic mechanism for sensing mitochondrial stress through PINK1 splicing and identify increased mitophagy as a disease marker and a therapeutic vulnerability in SRSF2P95H mutant MDS and AML.
Journal Article