Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Series TitleSeries Title
-
Reading LevelReading Level
-
YearFrom:-To:
-
More FiltersMore FiltersContent TypeItem TypeIs Full-Text AvailableSubjectPublisherSourceDonorLanguagePlace of PublicationContributorsLocation
Done
Filters
Reset
1,051
result(s) for
"Poor, H. Vincent"
Sort by:
Communication-efficient federated learning
by
Shlezinger, Nir
,
Eldar, Yonina C.
,
Poor, H. Vincent
in
Bandwidths
,
Communication
,
Communication networks
2021
Federated learning (FL) enables edge devices, such as Internet of Things devices (e.g., sensors), servers, and institutions (e.g., hospitals), to collaboratively train a machine learning (ML) model without sharing their private data. FL requires devices to exchange their ML parameters iteratively, and thus the time it requires to jointly learn a reliable model depends not only on the number of training steps but also on the ML parameter transmission time per step. In practice, FL parameter transmissions are often carried out by a multitude of participating devices over resourcelimited communication networks, for example, wireless networks with limited bandwidth and power. Therefore, the repeated FL parameter transmission from edge devices induces a notable delay, which can be larger than the ML model training time by orders of magnitude. Hence, communication delay constitutes a major bottleneck in FL. Here, a communication-efficient FL framework is proposed to jointly improve the FL convergence time and the training loss. In this framework, a probabilistic device selection scheme is designed such that the devices that can significantly improve the convergence speed and training loss have higher probabilities of being selected for ML model transmission. To further reduce the FL convergence time, a quantization method is proposed to reduce the volume of the model parameters exchanged among devices, and an efficient wireless resource allocation scheme is developed. Simulation results show that the proposed FL framework can improve the identification accuracy and convergence time by up to 3.6% and 87% compared to standard FL.
Journal Article
Advanced data analytics for power systems
\"Experts in data analytics and power engineering present techniques addressing the needs of modern power systems, covering theory and applications related to power system reliability, efficiency, and security. With topics spanning large-scale and distributed optimization, statistical learning, big data analytics, graph theory, and game theory, this is an essential resource for graduate students and researchers in academia and industry with backgrounds in power systems engineering, applied mathematics, and computer science\"-- Provided by publisher.
Lead federated neuromorphic learning for wireless edge artificial intelligence
2022
In order to realize the full potential of wireless edge artificial intelligence (AI), very large and diverse datasets will often be required for energy-demanding model training on resource-constrained edge devices. This paper proposes a lead federated neuromorphic learning (LFNL) technique, which is a decentralized energy-efficient brain-inspired computing method based on spiking neural networks. The proposed technique will enable edge devices to exploit brain-like biophysiological structure to collaboratively train a global model while helping preserve privacy. Experimental results show that, under the situation of uneven dataset distribution among edge devices, LFNL achieves a comparable recognition accuracy to existing edge AI techniques, while substantially reducing data traffic by >3.5× and computational latency by >2.0×. Furthermore, LFNL significantly reduces energy consumption by >4.5× compared to standard federated learning with a slight accuracy loss up to 1.5%. Therefore, the proposed LFNL can facilitate the development of brain-inspired computing and edge AI.
Designing energy-efficient computing solution for the implementation of AI algorithms in edge devices remains a challenge. Yang et al. proposes a decentralized brain-inspired computing method enabling multiple edge devices to collaboratively train a global model without a fixed central coordinator.
Journal Article
Wireless physical layer security
2017
Security in wireless networks has traditionally been considered to be an issue to be addressed separately from the physical radio transmission aspects of wireless systems. However, with the emergence of new networking architectures that are not amenable to traditional methods of secure communication such as data encryption, there has been an increase in interest in the potential of the physical properties of the radio channel itself to provide communications security. Information theory provides a natural framework for the study of this issue, and there has been considerable recent research devoted to using this framework to develop a greater understanding of the fundamental ability of the so-called physical layer to provide security in wireless networks. Moreover, this approach is also suggestive in many cases of coding techniques that can approach fundamental limits in practice and of techniques for other security tasks such as authentication. This paper provides an overview of these developments.
Journal Article
The effects of evolutionary adaptations on spreading processes in complex networks
by
Eletreby, Rashad
,
Poor, H. Vincent
,
Yağan, Osman
in
Adaptation
,
Changing environments
,
Ecological adaptation
2020
A common theme among previously proposed models for network epidemics is the assumption that the propagating object (e.g., a pathogen [in the context of infectious disease propagation] or a piece of information [in the context of information propagation]) is transferred across network nodes without going through any modification or evolutionary adaptations. However, in real-life spreading processes, pathogens often evolve in response to changing environments and medical interventions, and information is often modified by individuals before being forwarded. In this article, we investigate the effects of evolutionary adaptations on spreading processes in complex networks with the aim of 1) revealing the role of evolutionary adaptations on the threshold, probability, and final size of epidemics and 2) exploring the interplay between the structural properties of the network and the evolutionary adaptations of the spreading process.
Journal Article
What network motifs tell us about resilience and reliability of complex networks
2019
Network motifs are often called the building blocks of networks. Analysis of motifs has been found to be an indispensable tool for understanding local network structure, in contrast to measures based on node degree distribution and its functions that primarily address a global network topology. As a result, networks that are similar in terms of global topological properties may differ noticeably at a local level. This phenomenon of the impact of local structure has been recently documented in network fragility analysis and classification. At the same time, many studies of networks still tend to focus on global topological measures, often failing to unveil hidden mechanisms behind vulnerability of real networks and their dynamic response to malfunctions. In this paper, a study of motif-based analysis of network resilience and reliability under various types of intentional attacks is presented, with the goal of shedding light on local dynamics and vulnerability of networks. These methods are demonstrated on electricity transmission networks of 4 European countries, and the results are compared with commonly used resilience and reliability measures.
Journal Article
Introducing edge intelligence to smart meters via federated split learning
2024
The ubiquitous smart meters are expected to be a central feature of future smart grids because they enable the collection of massive amounts of fine-grained consumption data to support demand-side flexibility. However, current smart meters are not smart enough. They can only perform basic data collection and communication functions and cannot carry out on-device intelligent data analytics due to hardware constraints in terms of memory, computation, and communication capacity. Moreover, privacy concerns have hindered the utilization of data from distributed smart meters. Here, we present an end-edge-cloud federated split learning framework to enable collaborative model training on resource-constrained smart meters with the assistance of edge and cloud servers in a resource-efficient and privacy-enhancing manner. The proposed method is validated on a hardware platform to conduct building and household load forecasting on smart meters that only have 192 KB of static random-access memory (SRAM). We show that the proposed method can reduce the memory footprint by 95.5%, the training time by 94.8%, and the communication burden by 50% under the distributed learning framework and can achieve comparable or superior forecasting accuracy to that of conventional methods trained on high-capacity servers.
Smart meters collect detailed consumption data but struggle with on-device analytics due to hardware and privacy issues. The authors propose an end-edge-cloud federated split learning framework to introduce edge intelligence, reducing memory, training time, and communication burden while maintaining accuracy.
Journal Article
Quantifying cascading power outages during climate extremes considering renewable energy integration
2025
Climate extremes, such as hurricanes, combined with large-scale integration of environment-sensitive renewables, could exacerbate the risk of widespread power outages. We introduce a coupled climate-energy model for cascading power outages, which comprehensively captures the impacts of climate extremes on renewable generation, and transmission and distribution networks. The model is validated with the 2022 Puerto Rico catastrophic blackout during Hurricane Fiona – a unique system-wide blackout event with complete records of weather-induced outages. The model reveals a resilience pattern that was not captured by the previous models: early failure of certain critical components enhances overall system resilience. Sensitivity analysis on various scenarios of behind-the-meter solar integration demonstrates that lower integration levels (below 45%, including the current level) exhibit minimal impact on system resilience in this event. However, surpassing this critical level without pairing it with energy storage can exacerbate the probability of catastrophic blackouts.
This study develops a climate-energy model for cascading power outages during climate extremes, validated by Hurricane Fiona’s blackout. It reveals unique resilience patterns and quantifies the effects of renewable integration and energy storage.
Journal Article
Entanglement-assisted concatenated quantum codes
2022
Entanglement-assisted concatenated quantum codes (EACQCs), constructed by concatenating two quantum codes, are proposed. These EACQCs show significant advantages over standard concatenated quantum codes (CQCs). First, we prove that, unlike standard CQCs, EACQCs can beat the nondegenerate Hamming bound for entanglement-assisted quantum error-correction codes (EAQECCs). Second, we construct families of EACQCs with parameters better than the best-known standard quantum error-correction codes (QECCs) and EAQECCs. Moreover, these EACQCs require very few Einstein–Podolsky–Rosen (EPR) pairs to begin with. Finally, it is shown that EACQCs make entanglement-assisted quantum communication possible, even if the ebits are noisy. Furthermore, EACQCs can outperform CQCs in entanglement fidelity over depolarizing channels if the ebits are less noisy than the qubits. We show that the error-probability threshold of EACQCs is larger than that of CQCs when the error rate of ebits is sufficiently lower than that of qubits. Specifically, we derive a high threshold of 47% when the error probability of the preshared entanglement is 1% to that of qubits.
Journal Article