MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Introducing edge intelligence to smart meters via federated split learning
Introducing edge intelligence to smart meters via federated split learning
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Introducing edge intelligence to smart meters via federated split learning
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Introducing edge intelligence to smart meters via federated split learning
Introducing edge intelligence to smart meters via federated split learning

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Introducing edge intelligence to smart meters via federated split learning
Introducing edge intelligence to smart meters via federated split learning
Journal Article

Introducing edge intelligence to smart meters via federated split learning

2024
Request Book From Autostore and Choose the Collection Method
Overview
The ubiquitous smart meters are expected to be a central feature of future smart grids because they enable the collection of massive amounts of fine-grained consumption data to support demand-side flexibility. However, current smart meters are not smart enough. They can only perform basic data collection and communication functions and cannot carry out on-device intelligent data analytics due to hardware constraints in terms of memory, computation, and communication capacity. Moreover, privacy concerns have hindered the utilization of data from distributed smart meters. Here, we present an end-edge-cloud federated split learning framework to enable collaborative model training on resource-constrained smart meters with the assistance of edge and cloud servers in a resource-efficient and privacy-enhancing manner. The proposed method is validated on a hardware platform to conduct building and household load forecasting on smart meters that only have 192 KB of static random-access memory (SRAM). We show that the proposed method can reduce the memory footprint by 95.5%, the training time by 94.8%, and the communication burden by 50% under the distributed learning framework and can achieve comparable or superior forecasting accuracy to that of conventional methods trained on high-capacity servers. Smart meters collect detailed consumption data but struggle with on-device analytics due to hardware and privacy issues. The authors propose an end-edge-cloud federated split learning framework to introduce edge intelligence, reducing memory, training time, and communication burden while maintaining accuracy.