Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
11 result(s) for "Potts, Caelin C."
Sort by:
Genomic characterization of Haemophilus influenzae: a focus on the capsule locus
Background Haemophilus influenzae (Hi) can cause invasive diseases such as meningitis, pneumonia, or sepsis. Typeable Hi includes six serotypes (a through f), each expressing a unique capsular polysaccharide. The capsule, encoded by the genes within the capsule locus, is a major virulence factor of typeable Hi. Non-typeable (NTHi) does not express capsule and is associated with invasive and non-invasive diseases. Methods A total of 395 typeable and 293 NTHi isolates were characterized by whole genome sequencing (WGS). Phylogenetic analysis and multilocus sequence typing were used to characterize the overall genetic diversity. Pair-wise comparisons were used to evaluate the capsule loci. A WGS serotyping method was developed to predict the Hi serotype. WGS serotyping results were compared to slide agglutination (SAST) or real-time PCR (rt-PCR) serotyping. Results Isolates of each Hi serotype clustered into one or two subclades, with each subclade being associated with a distinct sequence type (ST). NTHi isolates were genetically diverse, with seven subclades and 125 STs being detected. Regions I and III of the capsule locus were conserved among the six serotypes (≥82% nucleotide identity). In contrast, genes in Region II were less conserved, with only six gene pairs from all serotypes showing ≥56% nucleotide identity. The WGS serotyping method was 99.9% concordant with SAST and 100% concordant with rt-PCR in determining the Hi serotype. Conclusions Genomic analysis revealed a higher degree of genetic diversity among NTHi compared to typeable Hi. The WGS serotyping method accurately predicted the Hi capsule type and can serve as an alternative method for Hi serotyping.
Trends in Acute Hepatitis of Unspecified Etiology and Adenovirus Stool Testing Results in Children — United States, 2017–2022
In November 2021, CDC was notified of a cluster of previously healthy children with hepatitis of unknown etiology evaluated at a single U.S. hospital (1). On April 21, 2022, following an investigation of this cluster and reports of similar cases in Europe (2,3), a health advisory* was issued requesting U.S. providers to report pediatric cases of hepatitis of unknown etiology to public health authorities. In the United States and Europe, many of these patients have also received positive adenovirus test results (1,3). Typed specimens have indicated adenovirus type 41, which typically causes gastroenteritis (1,3). Although adenovirus hepatitis has been reported in immunocompromised persons, adenovirus is not a recognized cause of hepatitis in healthy children (4). Because neither acute hepatitis of unknown etiology nor adenovirus type 41 is reportable in the United States, it is unclear whether either has recently increased above historical levels. Data from four sources were analyzed to assess trends in hepatitis-associated emergency department (ED) visits and hospitalizations, liver transplants, and adenovirus stool testing results among children in the United States. Because of potential changes in health care-seeking behavior during 2020-2021, data from October 2021-March 2022 were compared with a pre-COVID-19 pandemic baseline. These data do not suggest an increase in pediatric hepatitis or adenovirus types 40/41 above baseline levels. Pediatric hepatitis is rare, and the relatively low weekly and monthly counts of associated outcomes limit the ability to interpret small changes in incidence. Ongoing assessment of trends, in addition to enhanced epidemiologic investigations, will help contextualize reported cases of acute hepatitis of unknown etiology in U.S. children.
Epidemiology of Bacterial Meningitis in the Nine Years Since Meningococcal Serogroup A Conjugate Vaccine Introduction, Niger, 2010–2018
In 2010, Niger and other meningitis belt countries introduced a meningococcal serogroup A conjugate vaccine (MACV). We describe the epidemiology of bacterial meningitis in Niger from 2010 to 2018. Suspected and confirmed meningitis cases from January 1, 2010 to July 15, 2018 were obtained from national aggregate and laboratory surveillance. Cerebrospinal fluid specimens were analyzed by culture and/or polymerase chain reaction. Annual incidence was calculated as cases per 100 000 population. Selected isolates obtained during 2016-2017 were characterized by whole-genome sequencing. Of the 21 142 suspected cases of meningitis, 5590 were confirmed: Neisseria meningitidis ([Nm] 85%), Streptococcus pneumoniae ([Sp] 13%), and Haemophilus influenzae ([Hi] 2%). No NmA cases occurred after 2011. Annual incidence per 100 000 population was more dynamic for Nm (0.06-7.71) than for Sp (0.18-0.70) and Hi (0.01-0.23). The predominant Nm serogroups varied over time (NmW in 2010-2011, NmC in 2015-2018, and both NmC and NmX in 2017-2018). Meningococcal meningitis incidence was highest in the regions of Niamey, Tillabery, Dosso, Tahoua, and Maradi. The NmW isolates were clonal complex (CC)11, NmX were CC181, and NmC were CC10217. After MACV introduction, we observed an absence of NmA, the emergence and continuing burden of NmC, and an increase in NmX. Niger's dynamic Nm serogroup distribution highlights the need for strong surveillance programs to inform vaccine policy.
Invasive Meningococcal Disease due to Nongroupable Neisseria meningitidis—Active Bacterial Core Surveillance Sites, 2011–2016
Abstract We characterized 22 meningococcal disease cases due to nongroupable Neisseria meningitidis, a rare cause of invasive disease. Disease presentation and severity were similar to those for serogroupable meningococcal disease. However, 7 (32%) patients had complement deficiency or abnormal complement testing results, highlighting the importance of complement testing for nongroupable cases. Although nongroupable Neisseria meningitidis rarely causes invasive disease, our analysis of 22 nongroupable cases showed that disease presentation and severity were similar to those for serogroupable meningococcal disease. However, seven (32%) patients, including all of those with documented complement deficiency testing, had a complement deficiency or abnormal complement testing results, highlighting the importance of more routine complement testing for these cases.
Rapid Laboratory Identification of Neisseria meningitidis Serogroup C as the Cause of an Outbreak — Liberia, 2017
On April 25, 2017, a cluster of unexplained illness and deaths among persons who had attended a funeral during April 21-22 was reported in Sinoe County, Liberia (1). Using a broad initial case definition, 31 cases were identified, including 13 (42%) deaths. Twenty-seven cases were from Sinoe County (1), and two cases each were from Grand Bassa and Monsterrado counties, respectively. On May 5, 2017, initial multipathogen testing of specimens from four fatal cases using the Taqman Array Card (TAC) assay identified Neisseria meningitidis in all specimens. Subsequent testing using direct real-time polymerase chain reaction (PCR) confirmed N. meningitidis in 14 (58%) of 24 patients with available specimens and identified N. meningitidis serogroup C (NmC) in 13 (54%) patients. N. meningitidis was detected in specimens from 11 of the 13 patients who died; no specimens were available from the other two fatal cases. On May 16, 2017, the National Public Health Institute of Liberia and the Ministry of Health of Liberia issued a press release confirming serogroup C meningococcal disease as the cause of this outbreak in Liberia.
Outbreak of Neisseria meningitidis serogroup C outside the meningitis belt—Liberia, 2017: an epidemiological and laboratory investigation
On April 25, 2017, a cluster of unexplained illnesses and deaths associated with a funeral was reported in Sinoe County, Liberia. Molecular testing identified Neisseria meningitidis serogroup C (NmC) in specimens from patients. We describe the epidemiological investigation of this cluster and metagenomic characterisation of the outbreak strain. We collected epidemiological data from the field investigation and medical records review. Confirmed, probable, and suspected cases were defined on the basis of molecular testing and signs or symptoms of meningococcal disease. Metagenomic sequences from patient specimens were compared with 141 meningococcal isolate genomes to determine strain lineage. 28 meningococcal disease cases were identified, with dates of symptom onset from April 21 to April 30, 2017: 13 confirmed, three probable, and 12 suspected. 13 patients died. Six (21%) patients reported fever and 23 (82%) reported gastrointestinal symptoms. The attack rate for confirmed and probable cases among funeral attendees was 10%. Metagenomic sequences from six patient specimens were similar to a sequence type (ST) 10217 (clonal complex [CC] 10217) isolate genome from Niger, 2015. Multilocus sequencing identified five of seven alleles from one specimen that matched ST-9367, which is represented in the PubMLST database by one carriage isolate from Burkina Faso, in 2011, and belongs to CC10217. This outbreak featured high attack and case fatality rates. Clinical presentation was broadly consistent with previous meningococcal disease outbreaks, but predominance of gastrointestinal symptoms was unusual compared with previous African meningitis epidemics. The outbreak strain was genetically similar to NmC CC10217, which caused meningococcal disease outbreaks in Niger and Nigeria. CC10217 had previously been identified only in the African meningitis belt. US Global Health Security.
Interim Analysis of Acute Hepatitis of Unknown Etiology in Children Aged <10 Years — United States, October 2021–June 2022
On April 21, 2022, CDC issued a health advisory† encouraging U.S. clinicians to report all patients aged <10 years with hepatitis of unknown etiology to public health authorities, after identification of similar cases in both the United States (1) and Europe.§ A high proportion of initially reported patients had adenovirus detected in whole blood specimens, thus the health advisory encouraged clinicians to consider requesting adenovirus testing, preferentially on whole blood specimens. For patients meeting the criteria in the health advisory (patients under investigation [PUIs]), jurisdictional public health authorities abstracted medical charts and interviewed patient caregivers. As of June 15, 2022, a total of 296 PUIs with hepatitis onset on or after October 1, 2021, were reported from 42 U.S. jurisdictions. The median age of PUIs was 2 years, 2 months. Most PUIs were hospitalized (89.9%); 18 (6.1%) required a liver transplant, and 11 (3.7%) died. Adenovirus was detected in a respiratory, blood, or stool specimen of 100 (44.6%) of 224 patients.¶ Current or past infection with SARS-CoV-2 (the virus that causes COVID-19) was reported in 10 of 98 (10.2%) and 32 of 123 (26.0%) patients, respectively. No common exposures (e.g., travel, food, or toxicants) were identified. This nationwide investigation is ongoing. Further clinical data are needed to understand the cause of hepatitis in these patients and to assess the potential association with adenovirus.On April 21, 2022, CDC issued a health advisory† encouraging U.S. clinicians to report all patients aged <10 years with hepatitis of unknown etiology to public health authorities, after identification of similar cases in both the United States (1) and Europe.§ A high proportion of initially reported patients had adenovirus detected in whole blood specimens, thus the health advisory encouraged clinicians to consider requesting adenovirus testing, preferentially on whole blood specimens. For patients meeting the criteria in the health advisory (patients under investigation [PUIs]), jurisdictional public health authorities abstracted medical charts and interviewed patient caregivers. As of June 15, 2022, a total of 296 PUIs with hepatitis onset on or after October 1, 2021, were reported from 42 U.S. jurisdictions. The median age of PUIs was 2 years, 2 months. Most PUIs were hospitalized (89.9%); 18 (6.1%) required a liver transplant, and 11 (3.7%) died. Adenovirus was detected in a respiratory, blood, or stool specimen of 100 (44.6%) of 224 patients.¶ Current or past infection with SARS-CoV-2 (the virus that causes COVID-19) was reported in 10 of 98 (10.2%) and 32 of 123 (26.0%) patients, respectively. No common exposures (e.g., travel, food, or toxicants) were identified. This nationwide investigation is ongoing. Further clinical data are needed to understand the cause of hepatitis in these patients and to assess the potential association with adenovirus.
Adeno-associated virus type 2 in US children with acute severe hepatitis
As of August 2022, clusters of acute severe hepatitis of unknown aetiology in children have been reported from 35 countries, including the USA 1 , 2 . Previous studies have found human adenoviruses (HAdVs) in the blood from patients in Europe and the USA 3 – 7 , although it is unclear whether this virus is causative. Here we used PCR testing, viral enrichment-based sequencing and agnostic metagenomic sequencing to analyse samples from 16 HAdV-positive cases from 1 October 2021 to 22 May 2022, in parallel with 113 controls. In blood from 14 cases, adeno-associated virus type 2 (AAV2) sequences were detected in 93% (13 of 14), compared to 4 (3.5%) of 113 controls ( P  < 0.001) and to 0 of 30 patients with hepatitis of defined aetiology ( P  < 0.001). In controls, HAdV type 41 was detected in blood from 9 (39.1%) of the 23 patients with acute gastroenteritis (without hepatitis), including 8 of 9 patients with positive stool HAdV testing, but co-infection with AAV2 was observed in only 3 (13.0%) of these 23 patients versus 93% of cases ( P  < 0.001). Co-infections by Epstein–Barr virus, human herpesvirus 6 and/or enterovirus A71 were also detected in 12 (85.7%) of 14 cases, with higher herpesvirus detection in cases versus controls ( P  < 0.001). Our findings suggest that the severity of the disease is related to co-infections involving AAV2 and one or more helper viruses. A retrospective analysis using PCR testing, viral enrichment-based sequencing and agnostic metagenomic sequencing finds an association between adeno-associated virus type 2 and paediatric hepatitis of unknown cause.
Detection of Ciprofloxacin-Resistant, β -Lactamase–Producing Neisseria meningitidis Serogroup Y Isolates — United States, 2019–2020
Meningococcal disease is a sudden-onset, life-threatening illness caused by the bacterium Neisseria meningitidis. Prompt empiric antibiotic treatment can reduce morbidity and mortality among patients, and antibiotic prophylaxis can prevent secondary disease in close contacts. Historically, N. meningitidis isolates in the United States have largely been susceptible to the antibiotics recommended for treatment and prophylaxis, including penicillin and ciprofloxacin. This report describes detection of penicillin-resistant and ciprofloxacin-resistant N. meningitidis serogroup Y (NmY) isolates in the United States. NmY isolates containing a blaROB-1 β-lactamase enzyme gene conferring resistance to penicillins (1) were recovered from 33 cases reported during 2013-2020. Isolates from 11 of these cases, reported during 2019-2020, harbored a ciprofloxacin resistance-associated mutation in a chromosomal gene (gyrA). Cases were reported from 12 geographically disparate states; a majority of cases (22 of 33, 67%) occurred in Hispanic persons. These cases represent a substantial increase in penicillin-resistant and ciprofloxacin-resistant meningococci in the United States since 2013. Ceftriaxone and cefotaxime, the recommended first-line agents for empiric bacterial meningitis treatment, can continue to be used for treatment, but health care providers should ascertain susceptibility of meningococcal isolates to penicillin before switching to penicillin or ampicillin. Ongoing monitoring for antimicrobial resistance among meningococcal isolates and prophylaxis failures will be important to inform treatment and prophylaxis recommendations.Meningococcal disease is a sudden-onset, life-threatening illness caused by the bacterium Neisseria meningitidis. Prompt empiric antibiotic treatment can reduce morbidity and mortality among patients, and antibiotic prophylaxis can prevent secondary disease in close contacts. Historically, N. meningitidis isolates in the United States have largely been susceptible to the antibiotics recommended for treatment and prophylaxis, including penicillin and ciprofloxacin. This report describes detection of penicillin-resistant and ciprofloxacin-resistant N. meningitidis serogroup Y (NmY) isolates in the United States. NmY isolates containing a blaROB-1 β-lactamase enzyme gene conferring resistance to penicillins (1) were recovered from 33 cases reported during 2013-2020. Isolates from 11 of these cases, reported during 2019-2020, harbored a ciprofloxacin resistance-associated mutation in a chromosomal gene (gyrA). Cases were reported from 12 geographically disparate states; a majority of cases (22 of 33, 67%) occurred in Hispanic persons. These cases represent a substantial increase in penicillin-resistant and ciprofloxacin-resistant meningococci in the United States since 2013. Ceftriaxone and cefotaxime, the recommended first-line agents for empiric bacterial meningitis treatment, can continue to be used for treatment, but health care providers should ascertain susceptibility of meningococcal isolates to penicillin before switching to penicillin or ampicillin. Ongoing monitoring for antimicrobial resistance among meningococcal isolates and prophylaxis failures will be important to inform treatment and prophylaxis recommendations.
Detection of Ciprofloxacin-Resistant, β-Lactamase–Producing Neisseria meningitidis Serogroup Y Isolates - United States, 2019–2020
Meningococcal disease is a sudden-onset, life-threatening illness caused by the bacterium Neisseria meningitidis. Prompt empiric antibiotic treatment can reduce morbidity and mortality among patients, and antibiotic prophylaxis can prevent secondary disease in close contacts. Historically, N. meningitidis isolates in the US have largely been susceptible to the antibiotics recommended for treatment and prophylaxis, including penicillin and ciprofloxacin. This report describes detection of penicillin-resistant and ciprofloxacin-resistant N. meningitidis serogroup Y (NmY) isolates in the US. NmY isolates containing a blaROB-1 β-lactamase enzyme gene conferring resistance to penicillins were recovered from 33 cases reported during 2013-2020.