Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
58
result(s) for
"Print, Cristin G."
Sort by:
Uropathogenic Escherichia coli Releases Extracellular Vesicles That Are Associated with RNA
by
Phillips, Anthony R.
,
Blenkiron, Cherie
,
Print, Cristin G.
in
Bacteria
,
Bioinformatics
,
Biology and life sciences
2016
Bacterium-to-host signalling during infection is a complex process involving proteins, lipids and other diffusible signals that manipulate host cell biology for pathogen survival. Bacteria also release membrane vesicles (MV) that can carry a cargo of effector molecules directly into host cells. Supported by recent publications, we hypothesised that these MVs also associate with RNA, which may be directly involved in the modulation of the host response to infection.
Using the uropathogenic Escherichia coli (UPEC) strain 536, we have isolated MVs and found they carry a range of RNA species. Density gradient centrifugation further fractionated and characterised the MV preparation and confirmed that the isolated RNA was associated with the highest particle and protein containing fractions. Using a new approach, RNA-sequencing of libraries derived from three different 'size' RNA populations (<50nt, 50-200nt and 200nt+) isolated from MVs has enabled us to now report the first example of a complete bacterial MV-RNA profile. These data show that MVs carry rRNA, tRNAs, other small RNAs as well as full-length protein coding mRNAs. Confocal microscopy visualised the delivery of lipid labelled MVs into cultured bladder epithelial cells and showed their RNA cargo labelled with 5-EU (5-ethynyl uridine), was transported into the host cell cytoplasm and nucleus. MV RNA uptake by the cells was confirmed by droplet digital RT-PCR of csrC. It was estimated that 1% of MV RNA cargo is delivered into cultured cells.
These data add to the growing evidence of pathogenic bacterial MV being associated a wide range of RNAs. It further raises the plausibility for MV-RNA-mediated cross-kingdom communication whereby they influence host cell function during the infection process.
Journal Article
Sperm microRNA Content Is Altered in a Mouse Model of Male Obesity, but the Same Suite of microRNAs Are Not Altered in Offspring’s Sperm
by
Fullston, Tod
,
Print, Cristin G.
,
Ohlsson-Teague, E. Maria C.
in
Adiposity - genetics
,
Animals
,
Autism
2016
The prevalence of obesity is increasing worldwide and has tripled in men of reproductive age since the 1970s. Concerningly, obesity is not only comorbid with other chronic diseases, but there is mounting evidence that it increases the non-communicable disease load in their children (eg mortality, obesity, autism). Animal studies have demonstrated that paternal obesity increases the risk of metabolic (eg glucose metabolism defects, obesity) and reproductive disorders in offspring. Epigenetic changes within sperm are clear mechanistic candidates that are associated with both changes to the father's environment and offspring phenotype. Specifically there is emerging evidence that a father's sperm microRNA content both responds to paternal environmental cues and alters the gene expression profile and subsequent development of the early embryo. We used a mouse model of high fat diet (HFD) induced obesity to investigate whether male obesity could modulate sperm microRNA content. We also investigated whether this alteration to a father's sperm microRNA content lead to a similar change in the sperm of male offspring. Our investigations were initially guided by a Taqman PCR array, which indicated the differential abundance of 28 sperm borne microRNAs in HFD mice. qPCR confirmation in a much larger cohort of founder males demonstrated that 13 of these microRNAs were differentially abundant (11 up-regulated; 2 down-regulated) due to HFD feeding. Despite metabolic and reproductive phenotypes also being observed in grand-offspring fathered via the male offspring lineage, there was no evidence that any of the 13 microRNAs were also dysregulated in male offspring sperm. This was presumably due to the variation seen within both groups of offspring and suggests other mechanisms might act between offspring and grand-offspring. Thus 13 sperm borne microRNAs are modulated by a father's HFD and the presumed transfer of this altered microRNA payload to the embryo at fertilisation potentially acts to alter the embryonic molecular makeup post-fertilisation, altering its growth trajectory, ultimately affecting adult offspring phenotype and may contribute to paternal programming.
Journal Article
Innate immune checkpoint inhibitor resistance is associated with melanoma sub-types exhibiting invasive and de-differentiated gene expression signatures
by
Gimenez, Gregory
,
Hossain, Sultana Mehbuba
,
Cybulska-Stopa, Bozena
in
Adjuvants
,
Antigens
,
Biomarkers
2022
Melanoma is a highly aggressive skin cancer, which, although highly immunogenic, frequently escapes the body’s immune defences. Immune checkpoint inhibitors (ICI), such as anti-PD1, anti-PDL1, and anti-CTLA4 antibodies lead to reactivation of immune pathways, promoting rejection of melanoma. However, the benefits of ICI therapy remain limited to a relatively small proportion of patients who do not exhibit ICI resistance. Moreover, the precise mechanisms underlying innate and acquired ICI resistance remain unclear. Here, we have investigated differences in melanoma tissues in responder and non-responder patients to anti-PD1 therapy in terms of tumour and immune cell gene-associated signatures. We performed multi-omics investigations on melanoma tumour tissues, which were collected from patients before starting treatment with anti-PD1 immune checkpoint inhibitors. Patients were subsequently categorized into responders and non-responders to anti-PD1 therapy based on RECIST criteria. Multi-omics analyses included RNA-Seq and NanoString analysis. From RNA-Seq data we carried out HLA phenotyping as well as gene enrichment analysis, pathway enrichment analysis and immune cell deconvolution studies. Consistent with previous studies, our data showed that responders to anti-PD1 therapy had higher immune scores (median immune score for responders = 0.1335, median immune score for non-responders = 0.05426, p-value = 0.01, Mann-Whitney U two-tailed exact test) compared to the non-responders. Responder melanomas were more highly enriched with a combination of CD8+ T cells, dendritic cells (p-value = 0.03) and an M1 subtype of macrophages (p-value = 0.001). In addition, melanomas from responder patients exhibited a more differentiated gene expression pattern, with high proliferative- and low invasive-associated gene expression signatures, whereas tumours from non-responders exhibited high invasive- and frequently neural crest-like cell type gene expression signatures. Our findings suggest that non-responder melanomas to anti-PD1 therapy exhibit a de-differentiated gene expression signature, associated with poorer immune cell infiltration, which establishes a gene expression pattern characteristic of innate resistance to anti-PD1 therapy. Improved understanding of tumour-intrinsic gene expression patterns associated with response to anti-PD1 therapy will help to identify predictive biomarkers of ICI response and may help to identify new targets for anticancer treatment, especially with a capacity to function as adjuvants to improve ICI outcomes.
Journal Article
The Transcriptional Targets of Mutant FOXL2 in Granulosa Cell Tumours
by
Print, Cristin G.
,
Rosario, Roseanne
,
Araki, Hiromitsu
in
Analysis
,
Annotations
,
Aromatase - genetics
2012
Despite their distinct biology, granulosa cell tumours (GCTs) are treated the same as other ovarian tumours. Intriguingly, a recurring somatic mutation in the transcription factor Forkhead Box L2 (FOXL2) 402C>G has been found in nearly all GCTs examined. This investigation aims to identify the pathogenicity of mutant FOXL2 by studying its altered transcriptional targets.
The expression of mutant FOXL2 was reduced in the GCT cell line KGN, and wildtype and mutant FOXL2 were overexpressed in the GCT cell line COV434. Total RNA was hybridised to Affymetrix U133 Plus 2 microarrays. Comparisons were made between the transcriptomes of control cells and cells altered by FOXL2 knockdown and overexpression, to detect potential transcriptional targets of mutant FOXL2.
The overexpression of wildtype and mutant FOXL2 in COV434, and the silencing of mutant FOXL2 expression in KGN, has shown that mutant FOXL2 is able to differentially regulate the expression of many genes, including two well known FOXL2 targets, StAR and CYP19A. We have shown that many of the genes regulated by mutant FOXL2 are clustered into functional annotations of cell death, proliferation, and tumourigenesis. Furthermore, TGF-β signalling was found to be enriched when using the gene annotation tools GATHER and GeneSetDB. This enrichment was still significant after performing a robust permutation analysis.
Given that many of the transcriptional targets of mutant FOXL2 are known TGF-β signalling genes, we suggest that deregulation of this key antiproliferative pathway is one way mutant FOXL2 contributes to the pathogenesis of adult-type GCTs. We believe this pathway should be a target for future therapeutic interventions, if outcomes for women with GCTs are to improve.
Journal Article
Links between the Oncoprotein YB-1 and Small Non-Coding RNAs in Breast Cancer
2013
The nucleic acid-binding protein YB-1, a member of the cold-shock domain protein family, has been implicated in the progression of breast cancer and is associated with poor patient survival. YB-1 has sequence similarity to LIN28, another cold-shock protein family member, which has a role in the regulation of small noncoding RNAs (sncRNAs) including microRNAs (miRNAs). Therefore, to investigate whether there is an association between YB-1 and sncRNAs in breast cancer, we investigated whether sncRNAs were bound by YB-1 in two breast cancer cell lines (luminal A-like and basal cell-like), and whether the abundance of sncRNAs and mRNAs changed in response to experimental reduction of YB-1 expression.
RNA-immunoprecipitation with an anti-YB-1 antibody showed that several sncRNAs are bound by YB-1. Some of these were bound by YB-1 in both breast cancer cell lines; others were cell-line specific. The small RNAs bound by YB-1 were derived from various sncRNA families including miRNAs such as let-7 and miR-320, transfer RNAs, ribosomal RNAs and small nucleolar RNAs (snoRNA). Reducing YB-1 expression altered the abundance of a number of transcripts encoding miRNA biogenesis and processing proteins but did not alter the abundance of mature or precursor miRNAs.
YB-1 binds to specific miRNAs, snoRNAs and tRNA-derived fragments and appears to regulate the expression of miRNA biogenesis and processing machinery. We propose that some of the oncogenic effects of YB-1 in breast cancer may be mediated through its interactions with sncRNAs.
Journal Article
Mapping a route to Indigenous engagement in cancer genomic research
2019
Precision oncology guided by genomic research has an increasingly important role in the care of people with cancer. However, substantial inequities remain in cancer outcomes of Indigenous peoples, including Indigenous Māori in Aotearoa New Zealand (New Zealand). These inequities will be perpetuated unless deliberate steps are taken to include Indigenous peoples in all parts of cancer research—as research participants, in research leadership, and in research governance. This approach is especially important when there have been historical breaches of trust that have discouraged their participation in health research. This Personal View describes a precision oncology research roadmap for neuroendocrine tumour research, which seeks to reflect the values of New Zealand's Indigenous Māori people. This roadmap includes facilitating ongoing dialogue, Māori leadership, reciprocity, agreed kawa (guiding principles), tikanga (cultural protocols), and honest monitoring of what is and what is not being achieved. We challenge cancer researchers worldwide to generate locally appropriate roadmaps that honestly assess their practices to benefit Indigenous people internationally.
Journal Article
A Zebrafish Model of Roberts Syndrome Reveals That Esco2 Depletion Interferes with Development by Disrupting the Cell Cycle
by
Horsfield, Julia A.
,
Print, Cristin G.
,
Kuriger, Zoë
in
Abnormalities
,
Acetylation
,
Acetyltransferases - deficiency
2011
The human developmental diseases Cornelia de Lange Syndrome (CdLS) and Roberts Syndrome (RBS) are both caused by mutations in proteins responsible for sister chromatid cohesion. Cohesion is mediated by a multi-subunit complex called cohesin, which is loaded onto chromosomes by NIPBL. Once on chromosomes, cohesin binding is stabilized in S phase upon acetylation by ESCO2. CdLS is caused by heterozygous mutations in NIPBL or cohesin subunits SMC1A and SMC3, and RBS is caused by homozygous mutations in ESCO2. The genetic cause of both CdLS and RBS reside within the chromosome cohesion apparatus, and therefore they are collectively known as \"cohesinopathies\". However, the two syndromes have distinct phenotypes, with differences not explained by their shared ontology. In this study, we have used the zebrafish model to distinguish between developmental pathways downstream of cohesin itself, or its acetylase ESCO2. Esco2 depleted zebrafish embryos exhibit features that resemble RBS, including mitotic defects, craniofacial abnormalities and limb truncations. A microarray analysis of Esco2-depleted embryos revealed that different subsets of genes are regulated downstream of Esco2 when compared with cohesin subunit Rad21. Genes downstream of Rad21 showed significant enrichment for transcriptional regulators, while Esco2-regulated genes were more likely to be involved the cell cycle or apoptosis. RNA in situ hybridization showed that runx1, which is spatiotemporally regulated by cohesin, is expressed normally in Esco2-depleted embryos. Furthermore, myca, which is downregulated in rad21 mutants, is upregulated in Esco2-depleted embryos. High levels of cell death contributed to the morphology of Esco2-depleted embryos without affecting specific developmental pathways. We propose that cell proliferation defects and apoptosis could be the primary cause of the features of RBS. Our results show that mutations in different elements of the cohesion apparatus have distinct developmental outcomes, and provide insight into why CdLS and RBS are distinct diseases.
Journal Article
Breast Cancer Patient Prognosis Is Determined by the Interplay between TP53 Mutation and Alternative Transcript Expression: Insights from TP53 Long Amplicon Digital PCR Assays
by
Print, Cristin G.
,
Braithwaite, Antony W.
,
Knowlton, Nicholas
in
Breast cancer
,
Deoxyribonucleic acid
,
DNA sequencing
2021
The TP53 gene locus is capable of producing multiple RNA transcripts encoding the different p53 protein isoforms. We recently described multiplex long amplicon droplet digital PCR (ddPCR) assays to quantify seven of eight TP53 reference transcripts in human tumors. Here, we describe a new long amplicon ddPCR assay to quantify expression of the eighth TP53 reference transcript encoding ∆40p53α. We then applied these assays, alongside DNA sequencing of the TP53 gene locus, to tumors from a cohort of New Zealand (NZ) breast cancer patients. We found a high prevalence of mutations at TP53 splice sites in the NZ breast cancer cohort. Mutations at TP53 intron 4 splice sites were associated with overexpression of ∆133TP53 transcripts. Cox proportional hazards survival analysis showed that interplay between TP53 mutation status and expression of TP53 transcript variants was significantly associated with patient outcome, over and above standard clinical and pathological information. In particular, patients with no TP53 mutation and a low ratio of TP53 transcripts t2 to t1, which derive from alternative intron 1 acceptor splice sites, had a remarkably good outcome. We suggest that this type of analysis, integrating mutation and transcript expression, provides a step-change in our understanding of TP53 in cancer.
Journal Article
Epidermal cells help coordinate leukocyte migration during inflammation through fatty acid-fuelled matrix metalloproteinase production
2014
In addition to satisfying the metabolic demands of cells, mitochondrial metabolism helps regulate immune cell function. To date, such cell-intrinsic metabolic-immunologic cross-talk has only been described operating in cells of the immune system. Here we show that epidermal cells utilize fatty acid β-oxidation to fuel their contribution to the immune response during cutaneous inflammation. By live imaging metabolic and immunological processes within intact zebrafish embryos during cutaneous inflammation, we uncover a mechanism where elevated β-oxidation-fuelled mitochondria-derived reactive oxygen species within epidermal cells helps guide matrix metalloproteinase-driven leukocyte recruitment. This mechanism requires the activity of a zebrafish homologue of the mammalian mitochondrial enzyme, Immunoresponsive gene 1. This study describes the first example of metabolic reprogramming operating within a non-immune cell type to help control its contribution to the immune response. Targeting of this metabolic–immunologic interface within keratinocytes may prove useful in treating inflammatory dermatoses.
Metabolic regulation is emerging as an important component of immune response control and may be implicated in the development of inflammatory diseases. Here, the authors show that inflammatory leukocyte recruitment depends on mitochondrial metabolism in epidermal cells in zebrafish.
Journal Article
A Gene Expression Signature of Invasive Potential in Metastatic Melanoma Cells
2009
We are investigating the molecular basis of melanoma by defining genomic characteristics that correlate with tumour phenotype in a novel panel of metastatic melanoma cell lines. The aim of this study is to identify new prognostic markers and therapeutic targets that might aid clinical cancer diagnosis and management.
Global transcript profiling identified a signature featuring decreased expression of developmental and lineage specification genes including MITF, EDNRB, DCT, and TYR, and increased expression of genes involved in interaction with the extracellular environment, such as PLAUR, VCAN, and HIF1a. Migration assays showed that the gene signature correlated with the invasive potential of the cell lines, and external validation by using publicly available data indicated that tumours with the invasive gene signature were less melanocytic and may be more aggressive. The invasion signature could be detected in both primary and metastatic tumours suggesting that gene expression conferring increased invasive potential in melanoma may occur independently of tumour stage.
Our data supports the hypothesis that differential developmental gene expression may drive invasive potential in metastatic melanoma, and that melanoma heterogeneity may be explained by the differing capacity of melanoma cells to both withstand decreased expression of lineage specification genes and to respond to the tumour microenvironment. The invasion signature may provide new possibilities for predicting which primary tumours are more likely to metastasize, and which metastatic tumours might show a more aggressive clinical course.
Journal Article