Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
11
result(s) for
"Pulous, Fadi E"
Sort by:
Antennal-Expressed Ammonium Transporters in the Malaria Vector Mosquito Anopheles gambiae
by
Zwiebel, Laurence J.
,
Pulous, Fadi E.
,
Derryberry, Stephen L.
in
Alternative splicing
,
Ammonia
,
Ammonium
2014
The principal Afrotropical malaria vector mosquito, Anopheles gambiae remains a significant threat to human health. In this anthropophagic species, females detect and respond to a range of human-derived volatile kairomones such as ammonia, lactic acid, and other carboxylic acids in their quest for blood meals. While the molecular underpinnings of mosquito olfaction and host seeking are becoming better understood, many questions remain unanswered. In this study, we have identified and characterized two candidate ammonium transporter genes, AgAmt and AgRh50 that are expressed in the mosquito antenna and may contribute to physiological and behavioral responses to ammonia, which is an important host kairomone for vector mosquitoes. AgAmt transcripts are highly enhanced in female antennae while a splice variant of AgRh50 appears to be antennal-specific. Functional expression of AgAmt in Xenopus laevis oocytes facilitates inward currents in response to both ammonium and methylammonium, while AgRh50 is able to partially complement a yeast ammonium transporter mutant strain, validating their conserved roles as ammonium transporters. We present evidence to suggest that both AgAmt and AgRh50 are in vivo ammonium transporters that are important for ammonia sensitivity in An. gambiae antennae, either by clearing ammonia from the sensillar lymph or by facilitating sensory neuron responses to environmental exposure. Accordingly, AgAmt and AgRh50 represent new and potentially important targets for the development of novel vector control strategies.
Journal Article
Skull bone marrow channels as immune gateways to the central nervous system
by
Kipnis, Jonathan
,
Nahrendorf, Matthias
,
Mazzitelli, Jose A.
in
631/250/2504
,
631/250/256
,
631/378/371
2023
Decades of research have characterized diverse immune cells surveilling the CNS. More recently, the discovery of osseous channels (so-called ‘skull channels’) connecting the meninges with the skull and vertebral bone marrow has revealed a new layer of complexity in our understanding of neuroimmune interactions. Here we discuss our current understanding of skull and vertebral bone marrow anatomy, its contribution of leukocytes to the meninges, and its surveillance of the CNS. We explore the role of this hematopoietic output on CNS health, focusing on the supply of immune cells during health and disease.
Recent discoveries highlight the skull bone marrow, linked to the CNS via osseous channels, as a key neuroimmune compartment. Here, the authors discuss the anatomy, functions and implications of this immune reservoir on CNS health and disease.
Journal Article
Cerebrospinal fluid can exit into the skull bone marrow and instruct cranial hematopoiesis in mice with bacterial meningitis
2022
Interactions between the immune and central nervous systems strongly influence brain health. Although the blood–brain barrier restricts this crosstalk, we now know that meningeal gateways through brain border tissues facilitate intersystem communication. Cerebrospinal fluid (CSF), which interfaces with the glymphatic system and thereby drains the brain’s interstitial and perivascular spaces, facilitates outward signaling beyond the blood–brain barrier. In the present study, we report that CSF can exit into the skull bone marrow. Fluorescent tracers injected into the cisterna magna of mice migrate along perivascular spaces of dural blood vessels and then travel through hundreds of sub-millimeter skull channels into the calvarial marrow. During meningitis, bacteria hijack this route to invade the skull’s hematopoietic niches and initiate cranial hematopoiesis ahead of remote tibial sites. As skull channels also directly provide leukocytes to meninges, the privileged sampling of brain-derived danger signals in CSF by regional marrow may have broad implications for inflammatory neurological disorders.This manuscript describes a new cerebral spinal fluid exit route via hundreds of skull channels, with the cranial bone marrow as a destination. In meningitis, bacteria hijack this path and alert hematopoietic stem cells residing in the skull marrow.
Journal Article
B lymphocyte-derived acetylcholine limits steady-state and emergency hematopoiesis
by
Capen, Diane
,
Masson, Gustavo Santos
,
Swirski, Filip K
in
Autonomic nervous system
,
Bone marrow
,
Cardiovascular diseases
2022
Autonomic nerves control organ function through the sympathetic and parasympathetic branches, which have opposite effects. In the bone marrow, sympathetic (adrenergic) nerves promote hematopoiesis; however, how parasympathetic (cholinergic) signals modulate hematopoiesis is unclear. Here, we show that B lymphocytes are an important source of acetylcholine, a neurotransmitter of the parasympathetic nervous system, which reduced hematopoiesis. Single-cell RNA sequencing identified nine clusters of cells that expressed the cholinergic α7 nicotinic receptor (Chrna7) in the bone marrow stem cell niche, including endothelial and mesenchymal stromal cells (MSCs). Deletion of B cell-derived acetylcholine resulted in the differential expression of various genes, including Cxcl12 in leptin receptor+ (LepR+) stromal cells. Pharmacologic inhibition of acetylcholine esterase decreased the systemic supply of inflammatory myeloid cells in mice and humans with cardiovascular disease.Nahrendorf and colleagues show that B cells in the bone marrow are an important source of the neurotransmitter acetylcholine, which limits hematopoiesis through modulating the signals produced by the bone marrow stromal niche during steady-state and emergency hematopoiesis.
Journal Article
Absence of PKC-Alpha Attenuates Lithium-Induced Nephrogenic Diabetes Insipidus
by
von Bergen, Tobias N.
,
Blount, Mitsi A.
,
Rogers, Richard T.
in
A1 protein
,
Analysis
,
Animal tissues
2014
Lithium, an effective antipsychotic, induces nephrogenic diabetes insipidus (NDI) in ∼40% of patients. The decreased capacity to concentrate urine is likely due to lithium acutely disrupting the cAMP pathway and chronically reducing urea transporter (UT-A1) and water channel (AQP2) expression in the inner medulla. Targeting an alternative signaling pathway, such as PKC-mediated signaling, may be an effective method of treating lithium-induced polyuria. PKC-alpha null mice (PKCα KO) and strain-matched wild type (WT) controls were treated with lithium for 0, 3 or 5 days. WT mice had increased urine output and lowered urine osmolality after 3 and 5 days of treatment whereas PKCα KO mice had no change in urine output or concentration. Western blot analysis revealed that AQP2 expression in medullary tissues was lowered after 3 and 5 days in WT mice; however, AQP2 was unchanged in PKCα KO. Similar results were observed with UT-A1 expression. Animals were also treated with lithium for 6 weeks. Lithium-treated WT mice had 19-fold increased urine output whereas treated PKCα KO animals had a 4-fold increase in output. AQP2 and UT-A1 expression was lowered in 6 week lithium-treated WT animals whereas in treated PKCα KO mice, AQP2 was only reduced by 2-fold and UT-A1 expression was unaffected. Urinary sodium, potassium and calcium were elevated in lithium-fed WT but not in lithium-fed PKCα KO mice. Our data show that ablation of PKCα preserves AQP2 and UT-A1 protein expression and localization in lithium-induced NDI, and prevents the development of the severe polyuria associated with lithium therapy.
Journal Article
Talin-dependent integrin activation is required for endothelial proliferation and postnatal angiogenesis
2021
Integrin activation contributes to key blood cell functions including adhesion, proliferation and migration. An essential step in the cell signaling pathway that activates integrin requires the binding of talin to the β-integrin cytoplasmic tail. Whereas this pathway is understood in platelets in detail, considerably less is known regarding how integrin-mediated adhesion in endothelium contributes to postnatal angiogenesis. We utilized an inducible EC-specific talin1 knock-out mouse (Tln1 EC-KO) and talin1 L325R knock-in mutant (Tln1 L325R) mouse, in which talin selectively lacks the capacity to activate integrins, to assess the role of integrin activation during angiogenesis. Deletion of talin1 during postnatal days 1–3 (P1-P3) caused lethality by P8 with extensive defects in retinal angiogenesis and widespread hemorrhaging. Tln1 EC-KO mice displayed reduced retinal vascular area, impaired EC sprouting and proliferation relative to Tln1 CTRLs. In contrast, induction of talin1 L325R in neonatal mice resulted in modest defects in retinal angiogenesis and mice survived to adulthood. Interestingly, deletion of talin1 or expression of talin1 L325R in ECs increased MAPK/ERK signaling. Strikingly, B16-F0 tumors grown in Tln1 L325R adult mice were 55% smaller and significantly less vascularized than tumors grown in littermate controls. EC talin1 is indispensable for postnatal development angiogenesis. The role of EC integrin activation appears context-dependent as its inhibition is compatible with postnatal development with mild defects in retinal angiogenesis but results in marked defects in tumor growth and angiogenesis. Inhibiting EC pan-integrin activation may be an effective approach to selectively target tumor blood vessel growth.
Journal Article
Aortic-intima-resident macrophages are guardians of arterial health
2022
Aortic-intima-resident macrophages (MACAIRs) share the vessel luminal lining with endothelial cells in areas of turbulent flow and protrude into the arterial blood stream to clean the inner arterial surface via phagocytosis, shield nearby endothelial cells from activation by thrombin and prevent microthrombus formation.
Journal Article
Neutrophils incite and macrophages avert electrical storm after myocardial infarction
2022
Sudden cardiac death, arising from abnormal electrical conduction, occurs frequently in patients with coronary heart disease. Myocardial ischemia simultaneously induces arrhythmia and massive myocardial leukocyte changes. In this study, we optimized a mouse model in which hypokalemia combined with myocardial infarction triggered spontaneous ventricular tachycardia in ambulatory mice, and we showed that major leukocyte subsets have opposing effects on cardiac conduction. Neutrophils increased ventricular tachycardia via lipocalin-2 in mice, whereas neutrophilia associated with ventricular tachycardia in patients. In contrast, macrophages protected against arrhythmia. Depleting recruited macrophages in Ccr2 −/− mice or all macrophage subsets with Csf1 receptor inhibition increased both ventricular tachycardia and fibrillation. Higher arrhythmia burden and mortality in Cd36 −/− and Mertk −/− mice, viewed together with reduced mitochondrial integrity and accelerated cardiomyocyte death in the absence of macrophages, indicated that receptor-mediated phagocytosis protects against lethal electrical storm. Thus, modulation of leukocyte function provides a potential therapeutic pathway for reducing the risk of sudden cardiac death.
Journal Article
Cerebrospinal fluid outflow through skull channels instructs cranial hematopoiesis
by
Yang, Chobong
,
Capen, Diane
,
Grune, Jana
in
Blood-brain barrier
,
Bone marrow
,
Cerebrospinal fluid
2021
Interactions between the immune and central nervous systems strongly influence brain health. Although the blood-brain barrier restricts this crosstalk, we now know that meningeal gateways through brain border tissues, particularly dural lymphatic vessels that allow cerebrospinal fluid outflow, facilitate intersystem communication. Here we observe that cerebrospinal fluid exits into the skull bone marrow. Fluorescent tracers injected into the cisterna magna of mice travel through hundreds of sub-millimeter skull channels into the calvarial marrow. During meningitis, bacteria usurp this perivascular route to infect the skull's hematopoietic niches and initiate cranial hematopoiesis ahead of remote tibial sites. Because skull channels also directly provide leukocytes to meninges, the privileged sampling of brain-derived danger signals in cerebrospinal fluid by regional marrow has broad implications for neurological disorders. Competing Interest Statement The authors have declared no competing interest.