Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
194 result(s) for "Qi, Qibin"
Sort by:
Sugar-Sweetened Beverages and Genetic Risk of Obesity
This study examined the interaction between genetic obesity risk and intake of sugar-sweetened beverages in relation to BMI. Greater consumption of sugar-sweetened beverages was associated with a genetic predisposition to adiposity. Obesity has become a major threat to public health throughout the world. 1 The dramatic changes in diet and lifestyle during the past three decades are believed to have played a key role in triggering the obesity epidemic. 2 In the past several years, large-scale genomewide association studies have successfully identified multiple loci associated with the body-mass index (BMI); these loci consist of commonly distributed variants that determine the overall susceptibility to obesity. 3 A meta-analysis of genomewide association studies has established that 32 loci are associated with BMI at a genomewide significance level. 4 , 5 However, few studies have examined the interaction between . . .
Associations among circulating sphingolipids, β-cell function, and risk of developing type 2 diabetes: A population-based cohort study in China
Animal studies suggest vital roles of sphingolipids, especially ceramides, in the pathogenesis of type 2 diabetes (T2D) via pathways involved in insulin resistance, β-cell dysfunction, and inflammation, but human studies are limited. We aimed to evaluate the associations of circulating sphingolipids with incident T2D and to explore underlying mechanisms. The current study included 826 men and 1,148 women who were aged 50-70 years, from Beijing and Shanghai, and without T2D in 2005 and who were resurveyed in 2011. Cardiometabolic traits were measured at baseline and follow-up surveys. A total of 76 sphingolipids were quantified using high-coverage targeted lipidomics. Summary data for 2-sample Mendelian randomization were obtained from genome-wide association studies of circulating sphingolipids and the China Health and Nutrition Survey (n = 5,731). During the 6-year period, 529 participants developed T2D. Eleven novel and 3 reported sphingolipids, namely ceramides (d18:1/18:1, d18:1/20:0, d18:1/20:1, d18:1/22:1), saturated sphingomyelins (C34:0, C36:0, C38:0, C40:0), unsaturated sphingomyelins (C34:1, C36:1, C42:3), hydroxyl-sphingomyelins (C34:1, C38:3), and a hexosylceramide (d18:1/20:1), were positively associated with incident T2D (relative risks [RRs]: 1.14-1.21; all P < 0.001), after multivariate adjustment including lifestyle characteristics and BMI. Network analysis further identified 5 modules, and 2 modules containing saturated sphingomyelins showed the strongest associations with increased T2D risk (RRQ4 versus Q1 = 1.59 and 1.43; both Ptrend < 0.001). Mediation analysis suggested that the detrimental associations of 13 sphingolipids with T2D were largely mediated through β-cell dysfunction, as indicated by HOMA-B (mediation proportion: 11.19%-42.42%; all P < 0.001). Moreover, Mendelian randomization evidenced a positive association between a genetically instrumented ceramide (d18:1/20:1) and T2D (odds ratio: 1.15 [95% CI 1.05-1.26]; P = 0.002). Main limitations in the current study included potential undiagnosed cases and lack of an independent population for replication. In this study, we observed that a panel of novel sphingolipids with unique structures were positively associated with incident T2D, largely mediated through β-cell dysfunction, in Chinese individuals.
Gut microbiome composition in the Hispanic Community Health Study/Study of Latinos is shaped by geographic relocation, environmental factors, and obesity
Background Hispanics living in the USA may have unrecognized potential birthplace and lifestyle influences on the gut microbiome. We report a cross-sectional analysis of 1674 participants from four centers of the Hispanic Community Health Study/Study of Latinos (HCHS/SOL), aged 18 to 74 years old at recruitment. Results Amplicon sequencing of 16S rRNA gene V4 and fungal ITS1 fragments from self-collected stool samples indicate that the host microbiome is determined by sociodemographic and migration-related variables. Those who relocate from Latin America to the USA at an early age have reductions in Prevotella to Bacteroides ratios that persist across the life course. Shannon index of alpha diversity in fungi and bacteria is low in those who relocate to the USA in early life. In contrast, those who relocate to the USA during adulthood, over 45 years old, have high bacterial and fungal diversity and high Prevotella to Bacteroides ratios, compared to USA-born and childhood arrivals. Low bacterial diversity is associated in turn with obesity. Contrasting with prior studies, our study of the Latino population shows increasing Prevotella to Bacteroides ratio with greater obesity. Taxa within Acidaminococcus, Megasphaera, Ruminococcaceae, Coriobacteriaceae, Clostridiales, Christensenellaceae, YS2 (Cyanobacteria), and Victivallaceae are significantly associated with both obesity and earlier exposure to the USA, while Oscillospira and Anaerotruncus show paradoxical associations with both obesity and late-life introduction to the USA. Conclusions Our analysis of the gut microbiome of Latinos demonstrates unique features that might be responsible for health disparities affecting Hispanics living in the USA.
FTO Genotype and 2-Year Change in Body Composition and Fat Distribution in Response to Weight-Loss Diets: The POUNDS LOST Trial
Recent evidence suggests that the fat mass and obesity-associated gene (FTO) genotype may interact with dietary intakes in relation to adiposity. We tested the effect of FTO variant on weight loss in response to 2-year diet interventions. FTO rs1558902 was genotyped in 742 obese adults who were randomly assigned to one of four diets differing in the proportions of fat, protein, and carbohydrate. Body composition and fat distribution were measured by dual-energy x-ray absorptiometry and computed tomography. We found significant modification effects for intervention varying in dietary protein on 2-year changes in fat-free mass, whole body total percentage of fat mass, total adipose tissue mass, visceral adipose tissue mass, and superficial adipose tissue mass (for all interactions, P < 0.05). Carriers of the risk allele had a greater reduction in weight, body composition, and fat distribution in response to a high-protein diet, whereas an opposite genetic effect was observed on changes in fat distribution in response to a low-protein diet. Likewise, significant interaction patterns also were observed at 6 months. Our data suggest that a high-protein diet may be beneficial for weight loss and improvement of body composition and fat distribution in individuals with the risk allele of the FTO variant rs1558902.
Microbial co-occurrence complicates associations of gut microbiome with US immigration, dietary intake and obesity
Background Obesity and related comorbidities are major health concerns among many US immigrant populations. Emerging evidence suggests a potential involvement of the gut microbiome. Here, we evaluated gut microbiome features and their associations with immigration, dietary intake, and obesity in 2640 individuals from a population-based study of US Hispanics/Latinos. Results The fecal shotgun metagenomics data indicate that greater US exposure is associated with reduced ɑ-diversity, reduced functions of fiber degradation, and alterations in individual taxa, potentially related to a westernized diet. However, a majority of gut bacterial genera show paradoxical associations, being reduced with US exposure and increased with fiber intake, but increased with obesity. The observed paradoxical associations are not explained by host characteristics or variation in bacterial species but might be related to potential microbial co-occurrence, as seen by positive correlations among Roseburia , Prevotella , Dorea , and Coprococcus . In the conditional analysis with mutual adjustment, including all genera associated with both obesity and US exposure in the same model, the positive associations of Roseburia and Prevotella with obesity did not persist, suggesting that their positive associations with obesity might be due to their co-occurrence and correlations with obesity-related taxa, such as Dorea and Coprococcus . Conclusions Among US Hispanics/Latinos, US exposure is associated with unfavorable gut microbiome profiles for obesity risk, potentially related to westernized diet during acculturation. Microbial co-occurrence could be an important factor to consider in future studies relating individual gut microbiome taxa to environmental factors and host health and disease.
Comparison of Fecal Collection Methods for Microbiome and Metabolomics Studies
Integrated microbiome and metabolomics analyses hold the potential to reveal interactions between host and microbiota in relation to disease risks. However, there are few studies evaluating how field methods influence fecal microbiome characterization and metabolomics profiling. Five fecal collection methods [immediate freezing at -20°C without preservative, OMNIgene GUT, 95% ethanol, RNA , and Flinders Technology Associates (FTA) cards] were used to collect 40 fecal samples from eight healthy volunteers. We performed gut microbiota 16S rRNA sequencing, untargeted metabolomics profiling, and targeted metabolomics focusing on short chained fatty acids (SCFAs). Metrics included α-diversity and β-diversity as well as distributions of predominant phyla. To evaluate the concordance with the \"gold standard\" immediate freezing, the intraclass correlation coefficients (ICCs) for alternate fecal collection systems were calculated. Correlations between SCFAs and gut microbiota were also examined. The FTA cards had the highest ICCs compared to the immediate freezing method for α-diversity indices (ICCs = 0.96, 0.96, 0.76 for Shannon index, Simpson's Index, Chao-1 Index, respectively), followed by OMNIgene GUT, RNA , and 95% ethanol. High ICCs (all >0.88) were observed for all methods for the β-diversity metric. For untargeted metabolomics, in comparison to immediate freezing which detected 621 metabolites at ≥75% detectability level, 95% ethanol showed the largest overlapping set of metabolites ( = 430; 69.2%), followed by FTA cards ( = 330; 53.1%) and OMNIgene GUT ( = 213; 34.3%). Both OMNIgene GUT (ICCs = 0.82, 0.93, 0.64) and FTA cards (ICCs = 0.87, 0.85, 0.54) had acceptable ICCs for the top three predominant SCFAs (butyric acid, propionic acid and acetic acid). Nominally significant correlations between bacterial genera and SCFAs ( < 0.05) were observed in fecal samples collected by different methods. Of note, a high correlation between the genus (known butyrate producer) and butyric acid was observed for both immediate freezing ( = 0.83) and FTA cards ( = 0.74). Four alternative fecal collection methods are generally comparable with immediate freezing, but there are differences in certain measures of the gut microbiome and fecal metabolome across methods. Choice of method depends on the research interests, simplicity of fecal collection procedures and ease of transportation to the lab, especially for large epidemiological studies.
Genetic Predisposition to Dyslipidemia and Type 2 Diabetes Risk in Two Prospective Cohorts
Dyslipidemia has been associated with type 2 diabetes, but it remains unclear whether dyslipidemia plays a causal role in type 2 diabetes. We aimed to examine the association between the genetic predisposition to dyslipdemia and type 2 diabetes risk. The current study included 2,447 patients with type 2 diabetes and 3,052 control participants of European ancestry from the Nurses' Health Study and the Health Professionals Follow-up Study. Genetic predisposition to dyslipidemia was estimated by three genotype scores of lipids (LDL cholesterol, HDL cholesterol, and triglycerides) on the basis of the established loci for blood lipids. Linear relation analysis indicated that the HDL cholesterol and triglyceride genotype scores, but not the LDL cholesterol genotype score, were linearly related to elevated type 2 diabetes risk. Each point of the HDL cholesterol and triglyceride genotype scores was associated with a 3% (odds ratio [OR] 1.03 [95% CI 1.01-1.04]) and a 2% (1.02 [1.00-1.04]) increased risk of developing type 2 diabetes, respectively. The ORs were 1.39 (1.17-1.65) and 1.19 (1.01-1.41) for type 2 diabetes by comparing extreme quartiles of the HDL cholesterol genotype score and triglyceride genotype score, respectively. In conclusion, genetic predisposition to low HDL cholesterol or high triglycerides is related to elevated type 2 diabetes risk.
Metabolomic profiles of sleep-disordered breathing are associated with hypertension and diabetes mellitus development
Sleep-disordered breathing (SDB) is a prevalent disorder characterized by recurrent episodic upper airway obstruction. Using data from the Hispanic Community Health Study/Study of Latinos (HCHS/SOL), we apply principal component analysis (PCA) to seven SDB-related measures. We estimate the associations of the top two SDB PCs with serum levels of 617 metabolites, in both single-metabolite analysis, and a joint penalized regression analysis. The discovery analysis includes 3299 individuals, with validation in a separate dataset of 1522 individuals. Five metabolite associations with SDB PCs are discovered and replicated. SDB PC1, characterized by frequent respiratory events common in older and male adults, is associated with pregnanolone and progesterone-related sulfated metabolites. SDB PC2, characterized by short respiratory event length and self-reported restless sleep, enriched in young adults, is associated with sphingomyelins. Metabolite risk scores (MRSs), representing metabolite signatures associated with the two SDB PCs, are associated with 6-year incident hypertension and diabetes. These MRSs have the potential to serve as biomarkers for SDB, guiding risk stratification and treatment decisions. Sleep-disordered breathing (SDB) is a prevalent disorder linked to higher cardiovascular disease risk. Here, the authors show that summary scores reflecting SDB metabolite signatures are associated with increased risks for incident hypertension and diabetes, potentially useful in guiding risk stratification.
Comparison of Fecal Collection Methods on Variation in Gut Metagenomics and Untargeted Metabolomics
The choice of fecal collection method is essential for studying gut microbe-human interactions in large-scale population-based research. In this study, we examined the effects of fecal collection methods and storage time at ambient temperature on variations in the gut microbiome community composition; microbial diversity metrics at the species, gene, and pathway levels; antibiotic resistance genes; and metabolome profiling. Integrative analysis of high-quality metagenomics and metabolomics data from fecal samples provides novel clues for the mechanism underpinning gut microbe-human interactions. However, data regarding the influence of fecal collection methods on both metagenomics and metabolomics are sparse. Six fecal collection methods (the gold standard [GS] [i.e., immediate freezing at −80°C with no solution], 95% ethanol, RNAlater, OMNIgene Gut, fecal occult blood test [FOBT] cards, and Microlution) were used to collect 88 fecal samples from eight healthy volunteers for whole-genome shotgun sequencing (WGSS) and untargeted metabolomic profiling. Metrics assessed included the abundances of predominant phyla and α- and β-diversity at the species, gene, and pathway levels. Intraclass correlation coefficients (ICCs) were calculated for microbes and metabolites to estimate (i) stability (day 4 versus day 0 within each method), (ii) concordance (day 0 for each method versus the GS), and (iii) reliability (day 4 for each method versus the GS). For the top 4 phyla and microbial diversity metrics at the species, gene, and pathway levels, generally high stability and reliability were observed for most methods except for 95% ethanol; similar concordances were seen for different methods. For metabolomics data, 95% ethanol showed the highest stability, concordance, and reliability (median ICCs = 0.71, 0.71, and 0.65, respectively). Taken together, OMNIgene Gut, FOBT cards, RNAlater, and Microlution, but not 95% ethanol, were reliable collection methods for gut metagenomic studies. However, 95% ethanol was the best for preserving fecal metabolite profiles. We recommend using separate collecting methods for gut metagenomic sequencing and fecal metabolomic profiling in large population studies. IMPORTANCE The choice of fecal collection method is essential for studying gut microbe-human interactions in large-scale population-based research. In this study, we examined the effects of fecal collection methods and storage time at ambient temperature on variations in the gut microbiome community composition; microbial diversity metrics at the species, gene, and pathway levels; antibiotic resistance genes; and metabolome profiling. Our findings suggest using different fecal sample collection methods for different data generation purposes. OMNIgene Gut, FOBT cards, RNAlater, and Microlution, but not 95% ethanol, were reliable collection methods for gut metagenomic studies. However, 95% ethanol was the best for preserving fecal metabolite profiles.
Branched-chain amino acid, meat intake and risk of type 2 diabetes in the Women’s Health Initiative
Knowledge regarding association of dietary branched-chain amino acid (BCAA) and type 2 diabetes (T2D), and the contribution of BCAA from meat to the risk of T2D are scarce. We evaluated associations between dietary BCAA intake, meat intake, interaction between BCAA and meat intake and risk of T2D. Data analyses were performed for 74 155 participants aged 50−79 years at baseline from the Women’s Health Initiative for up to 15 years of follow-up. We excluded from analysis participants with treated T2D, and factors potentially associated with T2D or missing covariate data. The BCAA and total meat intake was estimated from FFQ. Using Cox proportional hazards models, we assessed the relationship between BCAA intake, meat intake, and T2D, adjusting for confounders. A 20 % increment in total BCAA intake (g/d and %energy) was associated with a 7 % higher risk for T2D (hazard ratio (HR) 1·07; 95 % CI 1·05, 1·09). For total meat intake, a 20 % increment was associated with a 4 % higher risk of T2D (HR 1·04; 95 % CI 1·03, 1·05). The associations between BCAA intake and T2D were attenuated but remained significant after adjustment for total meat intake. These relations did not materially differ with or without adjustment for BMI. Our results suggest that dietary BCAA and meat intake are positively associated with T2D among postmenopausal women. The association of BCAA and diabetes risk was attenuated but remained positive after adjustment for meat intake suggesting that BCAA intake in part but not in full is contributing to the association of meat with T2D risk.