Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
89 result(s) for "Qin, Xiang-Rong"
Sort by:
The non-structural protein of SFTSV activates NLRP1 and CARD8 inflammasome through disrupting the DPP9-mediated ternary complex
Inflammasomes function as immune-signaling platforms that were assembled following detection of pathogens. NLRP1 and CARD8 are related inflammasomes that use their C-terminal (CT) fragments containing a caspase recruitment domain (CARD) and the UPA domain to initiate the inflammasome. At rest, dipeptidyl peptidases 8 and 9 (DPP8/9) inhibit inflammatory CT by interacting with the function-to-find domain (FIIND) of NLRP1/CARD8 and forming an inhibitory NLRP1/CARD8-DPP9 ternary complex consisting of DPP9, full-length NLRP1/CARD8, and NLRP1/CARD8 CT. However, the specific triggers of NLRP1 and CARD8 have not yet been fully identified. Here, we report that a tick-borne bunyavirus SFTSV infection activates the NLRP1 inflammasome in primary keratinocytes and the CARD8 inflammasome in macrophages in a similar manner by targeting the ternary inhibitory complex, respectively. Mechanistically, SFTSV NSs interact with NLRP1 and CARD8 via their FIIND domains, suggesting that DPP8/9 are likely to compete for binding; on the other hand, NSs promote the degradation of DPP8 and DPP9. Both contribute to more efficient destabilization of the DPP8/9 ternary complex and release the activated CT. Moreover, CARD8 deletion promotes SFTSV replication. In conclusion, we found a novel mechanism of viral protein activation of NLRP1 and CARD8 by disrupting the DPP9-binding checkpoint.
Novel Bartonella Species in Insectivorous Bats, Northern China
Bartonella species are emerging human pathogens. Bats are known to carry diverse Bartonella species, some of which are capable of infecting humans. However, as the second largest mammalian group by a number of species, the role of bats as the reservoirs of Bartonella species is not fully explored, in term of their species diversity and worldwide distribution. China, especially Northern China, harbors a number of endemic insectivorous bat species; however, to our knowledge, there are not yet studies about Bartonella in bats in China. The aim of the study was to investigate the prevalence and genetic diversity of Bartonella species in bats in Northern China. Bartonella species were detected by PCR amplification of gltA gene in 25.2% (27/107) bats in Mengyin County, Shandong Province of China, including 1/3 Rhinolophus ferrumequinum, 2/10 Rhinolophus pusillus, 9/16 Myotis fimbriatus, 1/5 Myotis ricketti, 14/58 Myotis pequinius. Phylogenetic analysis showed that Bartonella species detected in bats in this study clustered into ten groups, and some might be novel Bartonella species. An association between Bartonella species and bat species was demonstrated and co-infection with different Bartonella species in a single bat was also observed. Our findings expanded our knowledge on the genetic diversity of Bartonella in bats, and shed light on the ecology of bat-borne Bartonella species.
Indoor and Outdoor Rodent Hosts of Orientia tsutsugamushi , Shandong Province, China
During December 2012–July 2016, we tested small indoor and outdoor mammals in Qingdao, China, for Orientia tsutsugamushi infection. We found that outdoor Apodemus agrarius mice, Cricetulus barabensis hamsters, and Niviventer confucianus rats, as well as indoor Mus musculus mice, tested positive for O. tsutsugamushi by PCR.
Pair combinations of human monoclonal antibodies fully protected mice against bunyavirus SFTSV lethal challenge
Severe fever with thrombocytopenia syndrome (SFTS) is a viral hemorrhagic fever caused by a tick-borne virus SFTSV with a mortality rate of up to 30%. Currently, there is no vaccine or effective therapy for SFTS. Neutralizing monoclonal antibody therapy, which provides immediate passive immunity and may limit disease progression, has emerged as a reliable approach for developing therapeutic drugs for SFTS. In this study, 4 human monoclonal antibodies (hmAbs) derived from convalescent SFTS patients’ lymphocytes based on human single-chain variable fragment antibody libraries were tested for their neutralizing activities in cells and their treatment effect in animals individually and in pair combinations. The neutralization test showed that all 4 hmAbs exhibited strong neutralizing activity against SFTSV infection in vitro . The protection rate of hmAbs 4-6, 1F6, 1B2, and 4-5 against SFTSV lethal challenge in IFNAR1 -/- A129 mice are 50%, 16.7%, 83.3%, and 66.7%, respectively. Notably, the pair combination of antibodies (1B2 and 4-5, 1B2 and 1F6) that recognized distinct epitopes protected 100% of mice against SFTSV lethal challenge. In conclusion, our findings indicate that the pair combinations of hmAbs 1B2 and 4-5 or hmAbs 1B2 and 1F6 may serve as promising therapeutic drugs for treating SFTSV infection.
Pathogenic Rickettsia, Anaplasma, and Ehrlichia in Rhipicephalus microplus ticks collected from cattle and laboratory hatched tick larvae
Background The order Rickettsiales contains a group of vector-borne gram-negative obligate intracellular bacteria, which often cause human emerging infectious diseases and economic losses for dairy and meat industries. The purpose of this study is to investigate the distribution of the pathogens including Rickettsia spp., Anaplasma spp., and Ehrlichia spp. in the order Rickettsiales in ticks from Yueyang, a prefecture-level city of Hunan Province in Sothern China, and assess the potentiality of transovarial transmission of these rickettsial organisms. Methods Ticks were collected from cattle in a farm in Yueyang City and the tick DNA was used as template to amplify the htrA, rrs, gltA, ompA and ompB genes of Rickettsia as well as rrs and groEL genes of Anaplasma and Ehrlichia. Results All ticks (465) collected were the cattle tick, Rhipicephalus microplus. PCR showed the minimum infection rate (MIR) was 1.5% (7/465) for Candidatus Rickettsia xinyangensis, 1.9% (9/465) for C. Anaplasma boleense, 1.3% (6/465) for Anaplasma platys, 0.6% (3/465) for A. marginale, and 1.17% (2/465) for each of A. bovis, Ehrlichia minasensis, and a non-classified Ehrlichia sp. A human pathogen, C. Rickettsia xinyangensis and A. platys were detected in 100% (3/3) and 33.3% (2/6) laboratory-hatched larval pools from infected females respectively. Conclusion Our study revealed a diversity of pathogenic rickettsial species in R. microplus ticks from Hunan Province suggesting a threat to people and animals in China. This study also provided the first molecular evidence for the potential transovarial transmission of C. Rickettsia xinyangensis and A. platys in R. microplus, indicating that R. microplus may act as the host of these two pathogens.
Severe fever with thrombocytopenia syndrome can masquerade as hemorrhagic fever with renal syndrome
Severe fever with thrombocytopenia syndrome (SFTS) is an emerging viral hemorrhagic fever with a high fatality rate and high frequency of person-to-person transmission and is caused by SFTSV, a tick-borne Phlebovirus. Because SFTS has similar clinical manifestations and epidemic characters (such as spatial and temporal distributions) with hemorrhagic fever with renal syndrome (HFRS) in China, we reason that SFTS patients might be misdiagnosed as HFRS. Acute-phase sera of 128 clinically diagnosed HFRS patients were retrospectively analyzed for Hantavirus IgM antibodies with ELISA. Hantavirus-negative patients' sera were further analyzed for SFTSV IgM antibodies with ELISA. ELISA showed that 73 of 128 (57.0%) of clinically diagnosed HFRS patients were IgM antibody positive to Hantaviruses. Among the 55 Hantavirus-IgM negative patients, four (7.3%) were IgM antibody positive to SFTSV. The results indicated that the four SFTS patients were misdiagnosed as HFRS. The misdiagnosed SFTS patients had clinical manifestations common to HFRS and were unable to be differentiated from HFRS clinically. Our study showed that SFTS patients could be clinically misdiagnosed as HFRS. The misdiagnosis of SFTS as HFRS causes particular concern because it may increase the risk of death of SFTS patients and person-to-person transmission of SFTSV without proper care for and isolation of SFTS patients.
Emergence of Zika virus infection in China
Currently, Zika virus (ZIKV) is spreading across the world and no ZIKV infection cases have ever been reported in China. Here, we aimed to determine whether ZIKV infection exists in China. Blood samples of 273 healthy individuals were collected from Nanning City, Guangxi Province, China in March 2019. We found that 9.5% (26/273) and 1.8% (5/273) of healthy persons were positive to ZIKV total antibody (IgG and/or IgM) IgM antibody, respectively. All ZIKV positive plasma samples were negative to Dengue virus and West Nile virus. Among the ZIKV antibody positive plasma samples, 65.4% (17/26) exhibited neutralizing activity to ZIKV. Followed up studies showed that none had clinical symptoms of ZIKV infection and oversea experience. Together, our study indicates that endemic ZIKV infections emerge in China, which not only suggested that ZIKV posed a potential threat to public health in China, but also expand the ZIKV epidemic areas in East and Southeast Asia.
SFTSV Prevalence in Ticks and Livestock in an SFTSV-Endemic Area in Central China
Severe fever with thrombocytopenia syndrome virus (SFTSV) is an emerging tick-borne bunyavirus that causes a severe viral hemorrhagic fever (SFTS), with a very high case mortality rate, expanding epidemic areas, and increasing incidence. Due to the lack of an effective drug or vaccine for SFTS, reducing the incidence and mortality of SFTS primarily relies on decreasing the density of ticks and the number of their host animals. However, which tick species and vertebrate animal serve as the major reservoir and animal host of SFTSV are not clearly understood. In May of 2023 and June of 2024, we collected 2437 ticks from domesticated animals and grassland in Suizhou City, a prefecture of Hubei Province in central China. A total of 195 domesticated animal blood samples were collected, including 152 goats, 26 cattle, and 17 dogs. Ticks were grouped for RNA extraction according to their life stages and feeding status. RNA from each animal’s blood and each group of ticks was extracted with an RNA extraction kit and tested for SFTSV with RT-PCR. Ticks were classified according to morphology, and representative ticks of each stage were confirmed with PCR amplification and DNA sequencing of the mitochondrial 16S RNA gene. Among the collected ticks, the majority were from goats (72.7%, 1772/2437), and Haemaphysalis longicornis was predominant, accounting for 99.47% (2425/2437), and other tick species were very rare, with 0.45% (11/2437) Rhipicephalus microplus, and 0.04% (1/2437) H. flava and Ixodes sinensis, respectively. We found SFTSV RNA in H. longicornis ticks with a minimum infection rate of 0.17% (4/2424) and in one goat (0.66%,1/152). In summary, we demonstrated that the H. longicornis tick is positive for SFTSV and that the goat is the major host of Haemaphysalis longicornis in Suizhou, central China. Our study suggests that controlling ticks on goats may play an important role in preventing SFTSV infection in China.
Interaction of H. pylori with toll-like receptor 2-196 to -174 ins/del polymorphism is associated with gastric cancer susceptibility in southern China
BackgroundGenetic polymorphisms of Toll-like receptors play important roles in gastric carcinogenesis. The aim of this study was to determine the role of TLR2-196 to -174 ins/del polymorphism in gastric cancer susceptibility and prognosis.MethodsThis study included 520 people from southern China. Samples were genotyped by the allele-specific polymerase chain reaction, among which 10% were randomly selected for sequencing. The serological method was used to determine Helicobacter pylori.ResultsThe TLR2 genotype was not associated with the risk of H. pylori infection. The del/del genotype exhibited significantly higher gastric cancer risk (adjusted OR 2.59, 95% CI 1.33‒5.07) than that of the ins/ins genotype. Further stratification analyses demonstrated that the del/del genotype was associated with a risk of intestinal gastric cancer (adjusted OR 2.62, 95% CI 1.34–5.14). In addition, the presence of the del/del genotype and the H. pylori infection conferred a synergistic effect (OR 3.04, 95% CI 1.33‒6.98) for the development of gastric cancer. The del/del genotype was not associated with a poor prognosis in gastric cancer patients.ConclusionThe del/del genotype is associated with an increased gastric cancer risk in the southern Chinese population. However, TLR2 polymorphism is neither associated with H. pylori infection, nor with a poor prognosis.
Helicobacter pylori DNA promotes cellular proliferation, migration, and invasion of gastric cancer by activating toll-like receptor 9
Helicobacter pylori (H. pylori) infection is a well-known risk factor for gastric cancer. Toll-like receptor 9 (TLR9) plays an important role in many cancers and is important for immunity to H. pylori infection. Thus, the present study aimed to evaluate the influence of H. pylori on TLR9 and explore its roles in gastric cancer. TLR9 expression in MKN45 cells, which were cocultured with or without H. pylori or H. pylori DNA, was detected using quantitative reverse transcription-polymerase chain reaction and Western blot assays. Then, TLR9 was knocked down through RNA interference technology in MKN45 cells. Cell Counting Kit-8 assay was performed to investigate cell proliferation, and the Transwell system was established to test the migrative and invasive abilities of MKN45 cells. H. pylori infection or H. pylori DNA level was positively correlated with TLR9 upregulation in MKN45 cells. In vitro, H. pylori DNA significantly accelerated cell proliferation and promoted the migration and invasion in MKN45 cells. In contrast, the knockdown of TLR9 significantly suppressed cell proliferation and inhibited the migration and invasion in MKN45 cells. The present results suggest that the H. pylori DNA/TLR9-signaling pathway plays an important role in gastric cancer, which might be a potential therapeutic target.