Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
189
result(s) for
"Qing’an Li"
Sort by:
A Numerical Method for the Dynamics Analysis of Blade Fracture Faults in Wind Turbines Using Geometrically Exact Beam Theory and Its Validation
2024
In pursuit of China’s goals for carbon peak and carbon neutrality, wind turbines are continually evolving to achieve a lower levelized cost of energy. The primary technological focus in the wind power industry is on large-scale, lightweight designs for entire turbines to enhance cost competitiveness. However, this advancement has led to an increased risk of blade fractures under extreme operating conditions. This paper addresses this challenging issue by using geometrically exact beam theory to develop a nonlinear simulation model for long, flexible blades. The model accounts for sudden changes in blade properties at the moment of failure, covering both the extensive motions and deformations of the fractured blade. The validation of the proposed model is carried out by comparing the results from power production cases with bladed simulations and further validating the simulations of blade fracture load cases against measurement data. The methodologies and findings presented in this study offer valuable insights for diagnosing faults in wind turbines.
Journal Article
Structure/Aerodynamic Nonlinear Dynamic Simulation Analysis of Long, Flexible Blade of Wind Turbine
by
Yang, Zhiqiang
,
Choi, Jin-Hwan
,
Cai, Chang
in
absolute nodal coordinate formulation
,
Accuracy
,
aerodynamic load
2025
To meet the requirements of geometric nonlinear modeling and bending–torsion coupling analysis of long, flexible offshore blades, this paper develops a high-precision engineering simplified model based on the Absolute Nodal Coordinate Formulation (ANCF). The model considers nonlinear variations in linear density, stiffness, and aerodynamic center along the blade span and enables efficient computation of 3D nonlinear deformation using 1D beam elements. Material and structural function equations are established based on actual 2D airfoil sections, and the chord vector is obtained from leading and trailing edge coordinates to calculate the angle of attack and aerodynamic loads. Torsional stiffness data defined at the shear center is corrected to the mass center using the axis shift theorem, ensuring a unified principal axis model. The proposed model is employed to simulate the dynamic behavior of wind turbine blades under both shutdown and operating conditions, and the results are compared to those obtained from the commercial software Bladed. Under shutdown conditions, the blade tip deformation error in the y-direction remains within 5% when subjected only to gravity, and within 8% when wind loads are applied perpendicular to the rotor plane. Under operating conditions, although simplified aerodynamic calculations, structural nonlinearity, and material property deviations introduce greater discrepancies, the x-direction deformation error remains within 15% across different wind speeds. These results confirm that the model maintains reasonable accuracy in capturing blade deformation characteristics and can provide useful support for early-stage dynamic analysis.
Journal Article
Effect of Blade Pitch Angle on the Aerodynamic Characteristics of a Straight-bladed Vertical Axis Wind Turbine Based on Experiments and Simulations
2018
The blade pitch angle has a significant influence on the aerodynamic characteristics of horizontal axis wind turbines. However, few research results have revealed its impact on the straight-bladed vertical axis wind turbine (Sb-VAWT). In this paper, wind tunnel experiments and CFD simulations were performed at the Sb-VAWT to investigate the effect of different blade pitch angles on the pressure distribution on the blade surface, the torque coefficient, and the power coefficient. In this study, the airfoil type was NACA0021 with two blades. The Sb-VAWT had a rotor radius of 1.0 m with a spanwise length of 1.2 m. The simulations were based on the k-ω Shear Stress Transport (SST) turbulence model and the wind tunnel experiments were carried out using a high-speed multiport pressure device. As a result, it was found that the maximum pressure difference on the blade surface was obtained at the blade pitch angle of β = 6° in the upstream region. However, the maximum pressure coefficient was shown at the blade pitch angle of β = 8° in the downstream region. The torque coefficient acting on a single blade reached its maximum value at the blade pitch angle of β = 6°. As the tip speed ratio increased, the power coefficient became higher and reached the optimum level. Subsequently, further increase of the tip speed ratio only led to a quick reversion of the power coefficient. In addition, the results from CFD simulations had also a good agreement with the results from the wind tunnel experiments. As a result, the blade pitch angle did not have a significant influence on the aerodynamic characteristics of the Sb-VAWT.
Journal Article
Review of Data-Driven Approaches for Wind Turbine Blade Icing Detection
by
Song, Xiaowen
,
Xing, Zhitai
,
Zhang, Yanfeng
in
Alternative energy sources
,
Altitude
,
Consumption
2023
Onshore wind turbines are primarily installed in high-altitude areas with good wind energy resources. However, in winter, the blades are easy to ice, which will seriously impact their aerodynamic performance, as well as the power and service life of the wind turbine. Therefore, it is of great practical significance to predict wind turbine blade icing in advance and take measures to eliminate the adverse effects of icing. Along these lines, three approaches to supervisory control and data acquisition (SCADA) data feature selection were summarized in this work. The problems of imbalance between positive and negative sample datasets, the underutilization of SCADA data time series information, the scarcity of high-quality labeled data, and weak model generalization capabilities faced by data-driven approaches in wind turbine blade icing detection, were reviewed. Finally, some future trends in data-driven approaches were discussed. Our work provides guidance for the use of technical means in the actual detection of wind turbine blades. In addition, it also gives some insights to the further research of fault diagnosis technology.
Journal Article
Study Method of Pitch-Angle Control on Load and the Performance of a Floating Offshore Wind Turbine by Experiments
by
Quynh T. Tran
,
Eleonora Riva Sanseverino
,
Le Quang Sang
in
Air-turbines
,
Alternative energy sources
,
Capital costs
2023
Offshore wind energy is a renewable energy source that is developing fast. It is considered to be the most promising energy source in the next decade. Besides, the expanding trend for this technology requires the consideration of diversified seabeds. In deep seabeds, floating offshore wind technology (FOWT) is needed. For this latter technology, such as for conventional WT, we need to consider aspects related to performance, aerodynamic force, and forces during operation. In this paper, a two-bladed downwind wind turbine model is utilized to conduct experiments. The collective pitch and cyclic pitch angle are adjusted using swashplated equipment. The fluid forces and moments acting on the rotor surface are measured by a six-component balancing system. By changing the pitch angle of the wind turbine blades, attempts are made to manage the fluid forces generated on the rotor surface. Under varied uniform wind velocities of 7, 8, 9, and 10 m/s, the effect of collective pitch control and cyclic pitch control on the power coefficient and thrust coefficient of FOWT is then discussed. Furthermore, at a wind speed of 10 m/s, both the power coefficient and loads are investigated as the pitch angle and yaw angle change. Experimental results indicate that the combined moment magnitude can be controlled by changing the pitch-angle amplitude. The power coefficient is adjusted by the cyclic pitch-angle controller when the pitch-angle phase changes. In addition, the thrust coefficient fluctuated when the pitch angle changed in the oblique inflow wind condition.
Journal Article
Review of Study on the Coupled Dynamic Performance of Floating Offshore Wind Turbines
by
Liu, Hao
,
Zhou, Shuni
,
Chen, Yewen
in
aerodynamic loads
,
Alternative energy sources
,
Climate change
2022
Floating offshore wind turbines (FOWT) have attracted more and more attention in recent years. However, environmental loads on FOWTs have higher complexity than those on the traditional onshore or fixed-bottom offshore wind turbines. In addition to aerodynamic loads on turbine blades, hydrodynamic loads also act on the support platform. A review on the aerodynamic analysis of blades, hydrodynamic simulation of the supporting platform, and coupled aero- and hydro-dynamic study on FOWTs, is presented in this paper. At present, the primary coupling method is based on the combination of BEM theory and potential flow theory, which can simulate the performance of the FOWT system under normal operating conditions but has certain limitations in solving the complex problem of coupled FOWTs. The more accurate and reliable CFD method used in the research of coupling problems is still in its infancy. In the future, multidisciplinary theories should be used sufficiently to research the coupled dynamics of hydrodynamics and aerodynamics from a global perspective, which is significant for the design and large-scale utilization of FOWT.
Journal Article
Impact of Leading-Edge Tubercles on Airfoil Aerodynamic Performance and Flow Patterns at Different Reynolds Numbers
2024
In recent years, leading-edge tubercles have gained significant attention as an innovative biomimetic flow control technique. This paper explores their impact on the aerodynamic performance and flow patterns of an airfoil through wind tunnel experiments, utilizing force measurements and tuft visualization at Reynolds numbers between 2.7 × 105 and 6.3 × 105. The baseline airfoil exhibits a hysteresis loop near the stall angle, with sharp changes in lift coefficient during variations in the angle of attack (AOA). In contrast, the airfoil with leading-edge tubercles demonstrates a smoother stall process and enhanced post-stall performance, though its pre-stall performance is slightly reduced. The study identifies four distinct flow regimes on the modified airfoil, corresponding to different segments of the lift coefficient curve. As the AOA increases, the flow transitions through stages of full attachment, trailing-edge separation, and local leading-edge separation across some or all valley sections. Additionally, the study suggests that normalizing aerodynamic performance based on the valley section chord length is more effective, supporting the idea that leading-edge tubercles function like a series of delta wings in front of a straight-leading-edge wing. These insights provide valuable guidance for the design of blades with leading-edge tubercles in applications such as wind and tidal turbines.
Journal Article
A Review on Performance Calculation and Design Methodologies for Horizontal-Axis Wind Turbine Blades
2025
The efficient, low-cost, and large-scale development and utilization of offshore wind energy resources is an inevitable trend for future growth. With the continuous increase in the scale of wind turbines and their expansion into deep-sea locations, there is an urgent need to develop ultra-long, flexible blades suitable for future high-capacity turbines. Existing reviews in the field of blade design lack a simultaneous focus on the two core elements of blade performance calculation and design methods, as well as a detailed evaluation of specific methods. Therefore, this paper reviews the performance calculation and design methodologies of horizontal-axis wind turbine blades from three aspects: aerodynamic design, structural design, and coupled aero-structural design. A critical introduction to various methods is provided, along with a key viewpoint centered around design philosophy: there is no global optimal solution; instead, the most suitable solution is chosen from the Pareto set according to the design philosophy. This review not only provides a concise and clear overview for researchers new to the field of blade design to quickly acquire key background knowledge but also offers valuable insights for experienced researchers through critical evaluations of various methods and the presentation of core viewpoints. The paper also includes a refined review of extended areas such as aerodynamic add-ons and fatigue characteristics, which broadens the scope of the review to touch on multiple research areas and inspire further research. In future research, it is crucial to identify new key issues and challenges associated with increased blade length and flexibility, address the challenges faced in integrated aero-structural design, and develop platforms and tools that support multi-objective optimization design of blades, ensuring the safe, stable, and orderly development of wind turbines.
Journal Article
Enhancing Aerodynamic Performance of Horizontal Axis Wind Turbine Blade Aerodynamic Performance Under Rough Wall Condition Using Vortex Generators
by
Wang, Dian
,
Cai, Chang
,
Zhang, Jianhua
in
aerodynamic performance
,
Aerodynamics
,
Air-turbines
2025
In the complex and harsh working environment of wind turbines, the horizontal axis wind turbine blade is increasingly confronted with the issue of surface roughening. It leads to a decrease and instability in the output power of the horizontal axis wind turbine. Vortex generator have emerged as a potential solution to this problem by regulating the flow patterns on the blade surface. This research focuses on exploring the impact of vortex generator on the aerodynamic performance of blades under rough wall condition by wind tunnel experiment and computational fluid dynamics simulation. It is important to improve the aerodynamic performance of horizontal axis wind turbine under rough condition. The results show that vortex generator changes the airfoil aerodynamic performance by slowing the stall angle of attack and increasing the ratio of lift-drag in some angles of attack. vortex generator delays the flow separation of the suction surface under the rough wall condition. It is able to counteract the reduction in the aerodynamic performance of blade under rough wall condition. At tip speed ratio is 5.83, vortex generator increased power coefficient by 47.8% under rough wall condition by reducing the flow separation area of 33% radius and weakening the spanwise flow. The study found that the vortex generator effectively eliminated the negative effects of blade surface roughening on aerodynamic performance, improved the roughness insensitivity of the blade, and has good potential for future applications.
Journal Article
Dynamic Analysis of a Moored Spar Platform in a Uniform Current: Fluid Load Prediction Using a Surrogate Model
by
Choi, Jin-Hwan
,
Wei, Xinming
,
Zhu, Xiangqian
in
Accuracy
,
Approximation
,
Artificial neural networks
2024
A moored spar platform, equipped with various instruments, serves as a crucial tool in hydrological monitoring. However, conducting dynamic analyses of a single spar that endures wind and current requires significant amount of computational time. To address this challenge, this study proposes an efficient surrogate model to represent fluid loads. A database is established to capture the relationship between fluid loads, spar displacements and uniform currents based on a numerical model of the spar. Subsequently, an artificial neural network method is employed to construct the surrogate model. Finally, the surrogate model is integrated with a numerical model of the cable, developed using the lumped mass method, to create a coupled model of the moored spar. The dynamic responses of this coupled model align closely with those obtained from the purely numerical model, demonstrating the efficacy of the surrogate model in capturing fluid loads on the spar. In addition to the surrogate model generation approach, this research provides an efficient method to couple the surrogate model with the numerical model in dynamic analysis of floating systems in uniform currents.
Journal Article