Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
69
result(s) for
"Rämet, Mika"
Sort by:
Efficacy and Safety of a Bivalent RSV Prefusion F Vaccine in Older Adults
by
Castillo Villa, Giselle
,
Polack, Fernando P.
,
Doreski, Pablo A.
in
3111 Biomedicine
,
Adverse events
,
Aged
2023
In a phase 3 trial, adults (≥60 years of age) received one 120-μg dose of RSVpreF vaccine (17,215) or placebo (17,069). Vaccine efficacy against RSV-associated lower respiratory tract illness was 67 to 86%.
Journal Article
Efficacy and Safety of an mRNA-Based RSV PreF Vaccine in Older Adults
2023
In a placebo-controlled, phase 2–3 trial, one dose of mRNA-1345 led to a lower incidence of RSV disease among adults 60 years of age or older. Solicited local and systemic adverse reactions occurred more often with the vaccine.
Journal Article
Evaluation of the BNT162b2 Covid-19 Vaccine in Children 5 to 11 Years of Age
by
Walter, Emmanuel B
,
Kuchar, Ernest
,
Talaat, Kawsar R
in
Children
,
Confidence intervals
,
Coronavirus
2022
After a dose for further testing was determined in a phase 1 study, a phase 2–3 trial was initiated in which two 10-μg doses of BNT162b2 were given 21 days apart to children 5 to 11 years of age. No serious adverse events were observed. High levels of neutralizing antibodies were induced, and vaccine efficacy 7 days or more after the second dose was 90.7%.
Journal Article
Immune-inducible non-coding RNA molecule lincRNA-IBIN connects immunity and metabolism in Drosophila melanogaster
by
Järvelä-Stölting, Mirva
,
Salminen, Tiina S.
,
Rämet, Mika
in
Animals
,
Bacteria
,
Bacterial diseases
2019
Non-coding RNAs have important roles in regulating physiology, including immunity. Here, we performed transcriptome profiling of immune-responsive genes in Drosophila melanogaster during a Gram-positive bacterial infection, concentrating on long non-coding RNA (lncRNA) genes. The gene most highly induced by a Micrococcus luteus infection was CR44404, named Induced by Infection (lincRNA-IBIN). lincRNA-IBIN is induced by both Gram-positive and Gram-negative bacteria in Drosophila adults and parasitoid wasp Leptopilina boulardi in Drosophila larvae, as well as by the activation of the Toll or the Imd pathway in unchallenged flies. We show that upon infection, lincRNA-IBIN is expressed in the fat body, in hemocytes and in the gut, and its expression is regulated by NF-κB signaling and the chromatin modeling brahma complex. In the fat body, overexpression of lincRNA-IBIN affected the expression of Toll pathway -mediated genes. Notably, overexpression of lincRNA-IBIN in unchallenged flies elevated sugar levels in the hemolymph by enhancing the expression of genes important for glucose retrieval. These data show that lncRNA genes play a role in Drosophila immunity and indicate that lincRNA-IBIN acts as a link between innate immune responses and metabolism.
Journal Article
Transdifferentiation and Proliferation in Two Distinct Hemocyte Lineages in Drosophila melanogaster Larvae after Wasp Infection
by
Vanha-aho, Leena-Maija
,
Hultmark, Dan
,
Rämet, Mika
in
Animals
,
Biology and Life Sciences
,
Blood
2016
Cellular immune responses require the generation and recruitment of diverse blood cell types that recognize and kill pathogens. In Drosophila melanogaster larvae, immune-inducible lamellocytes participate in recognizing and killing parasitoid wasp eggs. However, the sequence of events required for lamellocyte generation remains controversial. To study the cellular immune system, we developed a flow cytometry approach using in vivo reporters for lamellocytes as well as for plasmatocytes, the main hemocyte type in healthy larvae. We found that two different blood cell lineages, the plasmatocyte and lamellocyte lineages, contribute to the generation of lamellocytes in a demand-adapted hematopoietic process. Plasmatocytes transdifferentiate into lamellocyte-like cells in situ directly on the wasp egg. In parallel, a novel population of infection-induced cells, which we named lamelloblasts, appears in the circulation. Lamelloblasts proliferate vigorously and develop into the major class of circulating lamellocytes. Our data indicate that lamellocyte differentiation upon wasp parasitism is a plastic and dynamic process. Flow cytometry with in vivo hemocyte reporters can be used to study this phenomenon in detail.
Journal Article
Chromatin accessibility is associated with CRISPR-Cas9 efficiency in the zebrafish (Danio rerio)
by
Häkkinen, Tomi
,
Uusi-Mäkelä, Meri I. E.
,
Rämet, Mika
in
Accessibility
,
Animal genetic engineering
,
Animals
2018
CRISPR-Cas9 technology is routinely applied for targeted mutagenesis in model organisms and cell lines. Recent studies indicate that the prokaryotic CRISPR-Cas9 system is affected by eukaryotic chromatin structures. Here, we show that the likelihood of successful mutagenesis correlates with transcript levels during early development in zebrafish (Danio rerio) embryos. In an experimental setting, we found that guide RNAs differ in their onset of mutagenesis activity in vivo. Furthermore, some guide RNAs with high in vitro activity possessed poor mutagenesis activity in vivo, suggesting the presence of factors that limit the mutagenesis in vivo. Using open access datasets generated from early developmental stages of the zebrafish, and guide RNAs selected from the CRISPRz database, we provide further evidence for an association between gene expression during early development and the success of CRISPR-Cas9 mutagenesis in zebrafish embryos. In order to further inspect the effect of chromatin on CRISPR-Cas9 mutagenesis, we analysed the relationship of selected chromatin features on CRISPR-Cas9 mutagenesis efficiency using publicly available data from zebrafish embryos. We found a correlation between chromatin openness and the efficiency of CRISPR-Cas9 mutagenesis. These results indicate that CRISPR-Cas9 mutagenesis is influenced by chromatin accessibility in zebrafish embryos.
Journal Article
Integrative genetic, genomic and transcriptomic analysis of heat shock protein and nuclear hormone receptor gene associations with spontaneous preterm birth
2021
Heat shock proteins are involved in the response to stress including activation of the immune response. Elevated circulating heat shock proteins are associated with spontaneous preterm birth (SPTB). Intracellular heat shock proteins act as multifunctional molecular chaperones that regulate activity of nuclear hormone receptors. Since SPTB has a significant genetic predisposition, our objective was to identify genetic and transcriptomic evidence of heat shock proteins and nuclear hormone receptors that may affect risk for SPTB. We investigated all 97 genes encoding members of the heat shock protein families and all 49 genes encoding nuclear hormone receptors for their potential role in SPTB susceptibility. We used multiple genetic and genomic datasets including genome-wide association studies (GWASs), whole-exome sequencing (WES), and placental transcriptomics to identify SPTB predisposing factors from the mother, infant, and placenta. There were multiple associations of heat shock protein and nuclear hormone receptor genes with SPTB. Several orthogonal datasets supported roles for
SEC63
,
HSPA1L
,
SACS
,
RORA
, and
AR
in susceptibility to SPTB. We propose that suppression of specific heat shock proteins promotes maintenance of pregnancy, whereas activation of specific heat shock protein mediated signaling may disturb maternal–fetal tolerance and promote labor.
Journal Article
Characterization of the innate immune response to Streptococcus pneumoniae infection in zebrafish
by
Rantapero, Tommi
,
Rounioja, Samuli
,
Uusi-Mäkelä, Meri I. E.
in
Aged
,
Analysis
,
Animal genetic engineering
2023
Streptococcus pneumoniae
(pneumococcus) is one of the most frequent causes of pneumonia, sepsis and meningitis in humans, and an important cause of mortality among children and the elderly. We have previously reported the suitability of the zebrafish (
Danio rerio
) larval model for the study of the host-pathogen interactions in pneumococcal infection. In the present study, we characterized the zebrafish innate immune response to pneumococcus in detail through a whole-genome level transcriptome analysis and revealed a well-conserved response to this human pathogen in challenged larvae. In addition, to gain understanding of the genetic factors associated with the increased risk for severe pneumococcal infection in humans, we carried out a medium-scale forward genetic screen in zebrafish. In the screen, we identified a mutant fish line which showed compromised resistance to pneumococcus in the septic larval infection model. The transcriptome analysis of the mutant zebrafish larvae revealed deficient expression of a gene homologous for human
C-reactive protein
(
CRP
). Furthermore, knockout of one of the six zebrafish
crp
genes by CRISPR-Cas9 mutagenesis predisposed zebrafish larvae to a more severe pneumococcal infection, and the phenotype was further augmented by concomitant knockdown of a gene for another Crp isoform. This suggests a conserved function of C-reactive protein in anti-pneumococcal immunity in zebrafish. Altogether, this study highlights the similarity of the host response to pneumococcus in zebrafish and humans, gives evidence of the conserved role of C-reactive protein in the defense against pneumococcus, and suggests novel host genes associated with pneumococcal infection.
Journal Article
DNA vaccination with the Mycobacterium marinum MMAR_4110 antigen inhibits reactivation of a latent mycobacterial infection in the adult Zebrafish
2020
•Reactivation-associated M. marinum genes were studied with mRNA sequencing.•MMAR_4110 antigens inhibit reactivation of latent mycobacterial infection in zebrafish.•MMAR_4110 is a potential target for vaccines and drugs against tuberculosis.
Tuberculosis is a major challenge for health care, as options for its treatment and prevention are limited. Therefore, novel approaches, such as DNA vaccination, to both prevent primary infections and the reactivation of latent infections need to be developed. A Mycobacterium marinum infection in adult zebrafish (Danio rerio) recapitulates features of the human Mycobacterium tuberculosis infection, providing a convenient preclinical animal model for studying tuberculosis.
Hypoxic M. marinum cultures were produced with the Wayne model, and further reaerated to replicate the in vivo reactivation in vitro. Expression levels of M. marinum genes were studied with mRNA sequencing from exponentially growing bacteria, anaerobic cultures and at 2 and 12 h after reaeration. Seven reactivation-associated genes were selected for further studies, where their antigen potentiality as DNA-vaccines to prevent reactivation of a latent mycobacterial infection was investigated in the adult zebrafish model. The Mann-Whitney test was used to evaluate differences in bacterial counts between the groups.
The mRNA sequencing data showed that, seven M. marinum genes, MMAR_0444, MMAR_0514, MMAR_0552, MMAR_0641, MMAR_1093, MMAR_4110 and MMAR_4524, were upregulated during reactivation when compared to both dormant and logarithmic growing bacteria. Four different MMAR_4110 antigens prevented the reactivation of a latent mycobacterial infection in the adult zebrafish.
This study provides novel information about reactivation-related M. marinum genes. One of the antigens, MMAR_4110, inhibited the reactivation of a latent M. marinum infection in zebrafish, implicating that the characterized genes could be potential targets for further vaccine and drug development against mycobacterial diseases.
Journal Article
Risk of spontaneous preterm birth and fetal growth associates with fetal SLIT2
by
Karjalainen, Minna K.
,
Pasanen, Anu
,
Ojaniemi, Marja
in
Acids
,
Axon guidance
,
Biology and Life Sciences
2019
Spontaneous preterm birth (SPTB) is the leading cause of neonatal death and morbidity worldwide. Both maternal and fetal genetic factors likely contribute to SPTB. We performed a genome-wide association study (GWAS) on a population of Finnish origin that included 247 infants with SPTB (gestational age [GA] < 36 weeks) and 419 term controls (GA 38-41 weeks). The strongest signal came within the gene encoding slit guidance ligand 2 (SLIT2; rs116461311, minor allele frequency 0.05, p = 1.6×10-6). Pathway analysis revealed the top-ranking pathway was axon guidance, which includes SLIT2. In 172 very preterm-born infants (GA <32 weeks), rs116461311 was clearly overrepresented (odds ratio 4.06, p = 1.55×10-7). SLIT2 variants were associated with SPTB in another European population that comprised 260 very preterm infants and 9,630 controls. To gain functional insight, we used immunohistochemistry to visualize SLIT2 and its receptor ROBO1 in placentas from spontaneous preterm and term births. Both SLIT2 and ROBO1 were located in villous and decidual trophoblasts of embryonic origin. Based on qRT-PCR, the mRNA levels of SLIT2 and ROBO1 were higher in the basal plate of SPTB placentas compared to those from term or elective preterm deliveries. In addition, in spontaneous term and preterm births, placental SLIT2 expression was correlated with variations in fetal growth. Knockdown of ROBO1 in trophoblast-derived HTR8/SVneo cells by siRNA indicated that it regulate expression of several pregnancy-specific beta-1-glycoprotein (PSG) genes and genes involved in inflammation. Our results show that the fetal SLIT2 variant and both SLIT2 and ROBO1 expression in placenta and trophoblast cells may be correlated with susceptibility to SPTB. SLIT2-ROBO1 signaling was linked with regulation of genes involved in inflammation, PSG genes, decidualization and fetal growth. We propose that this receptor-ligand couple is a component of the signaling network that promotes SPTB.
Journal Article