Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
22 result(s) for "Rödiger, Tino"
Sort by:
GIS-based analytical modeling on evaluating impacts of urbanization in Amman water resources, Jordan
Amman governorate is the largest governorate in terms of population and urbanization in Jordan that is the third most water-scarce country worldwide. It has also limited water resources that were rapidly decreasing as results of groundwater over-pumping and climate changes that generate a serious water crisis. However, the population and urbanization focused on the Northwest of the governorate. The surface water and groundwater resources are available in the Northwest area as well. The overlaying between urbanization and population on one hand and water resources on the other hand resulted in different environmental, hydrological, and hydrogeological problems. Our research investigated these problems using an integrated approach of remote sensing and geographic information systems. Furthermore, our research suggested a spatial plan that would solve the conflict of urbanization's impact on water resources in Amman. Accordingly, the catchment areas that span on the study area and their drainage network were defined.
Microbial and Chemical Characterization of Underwater Fresh Water Springs in the Dead Sea
Due to its extreme salinity and high Mg concentration the Dead Sea is characterized by a very low density of cells most of which are Archaea. We discovered several underwater fresh to brackish water springs in the Dead Sea harboring dense microbial communities. We provide the first characterization of these communities, discuss their possible origin, hydrochemical environment, energetic resources and the putative biogeochemical pathways they are mediating. Pyrosequencing of the 16S rRNA gene and community fingerprinting methods showed that the spring community originates from the Dead Sea sediments and not from the aquifer. Furthermore, it suggested that there is a dense Archaeal community in the shoreline pore water of the lake. Sequences of bacterial sulfate reducers, nitrifiers iron oxidizers and iron reducers were identified as well. Analysis of white and green biofilms suggested that sulfide oxidation through chemolitotrophy and phototrophy is highly significant. Hyperspectral analysis showed a tight association between abundant green sulfur bacteria and cyanobacteria in the green biofilms. Together, our findings show that the Dead Sea floor harbors diverse microbial communities, part of which is not known from other hypersaline environments. Analysis of the water's chemistry shows evidence of microbial activity along the path and suggests that the springs supply nitrogen, phosphorus and organic matter to the microbial communities in the Dead Sea. The underwater springs are a newly recognized water source for the Dead Sea. Their input of microorganisms and nutrients needs to be considered in the assessment of possible impact of dilution events of the lake surface waters, such as those that will occur in the future due to the intended establishment of the Red Sea-Dead Sea water conduit.
Applying Rare Earth Elements, Uranium, and sup.87Sr/sup.86Sr to Disentangle Structurally Forced Confluence of Regional Groundwater Resources: The Case of the Lower Yarmouk Gorge
The conjoint discussion of tectonic features, correlations of element concentrations, [delta][sup.18]O, [delta]D, and [sup.87]Sr/[sup.86]Sr of groundwater leads to new insight into sources of groundwater, their flow patterns, and salinization in the Yarmouk Basin. The sources of groundwater are precipitation infiltrating into basaltic rock or limestone aquifers. Leaching of relic brines and dissolution of gypsum and calcite from the limestone host rocks generate enhanced salinity in groundwater in different degrees. High U(VI) suggests leaching of U from phosphorite-rich Upper Cretaceous B2 formation. Both very low U(VI) and specific rare earth element including yttrium (REY) distribution patterns indicate interaction with ferric oxyhydroxides formed during weathering of widespread alkali olivine basalts in the catchment area. REY patterns of groundwater generated in basaltic aquifers are modified by interaction with underlying limestones. Repeated sampling over 18 years revealed that the flow paths towards certain wells of groundwater varied as documented by changes in concentrations of dissolved species and REY patterns and U(VI) contents. In the Yarmouk Gorge, groundwater with basaltic REY patterns but high U(VI) and low [Sr.sup.2+] and intermediate sulfate concentrations mainly ascends in artesian wells tapping a buried flower structure fault system crossing the trend of the gorge.
Hydrological modelling of a heterogeneous catchment using an integrated approach of remote sensing, a geographic information system and hydrologic response units: the case study of Wadi Zerka Ma’in catchment area, north east of the Dead Sea
Wadi Zerka Ma’in is the smallest catchment area at the eastern side of the Dead Sea basin and has the largest city in that region. It receives direct groundwater recharge from an area of about 611.25 km². Climatically and geomorphologically the region is heterogeneous. These heterogeneities have a major impact on the spatial distributions of the groundwater recharge. We used a Hydrological Response Unit method to investigate the spatial distributions and estimate the amount of groundwater recharge. An integrated approach of remote sensing and a geographic information system was used to feed the hydrological model with the land surface and climatic data. According to our model, it was found that during the last 30 years the average amount of rainfall in the studied area decreased from 275 mm/year to 100 mm/year and the temperature increased from 24.8 to 26.8 °C. These climatic changes had a major impact on the hydrological cycle of the study area by decreasing the runoff of the Zerka Ma’in River and increasing the evapotranspiration. As a result, the groundwater recharge of that catchment decreased during the same time period. It was found that recharge reached a maximum value of 94 million cubic metre (m³) in 1983, and since 1991 was not exceeding 50 million m³per year any more.
Groundwater chemistry of strike slip faulted aquifers: the case study of Wadi Zerka Ma’in aquifers, north east of the Dead Sea
Wadi Zerka Ma’in catchment area is located to the north east of the Dead Sea. It has two types of aquifers: (a) an upper unconfined aquifer and (b) a lower confined aquifer. The two aquifers are separated by a marl aquiclude. A major strike slip fault passes perpendicularly through the two aquifers and the aquiclude layer with embedded normal faults. The aim of the study was to specify the effect of the major strike slip fault on the groundwater chemistry. The spatial variability of the hydrochemical compositions and physiochemical parameters of the groundwater were investigated. It was found that the embedded normal faults, of the strike slip fault, form conduits that allow groundwater to flow from the lower aquifer to the upper aquifer, resulting in mixed groundwater. The ratio of mixing was estimated to be 94 % groundwater from the upper aquifer and 6 % from the lower aquifer. Since groundwater in the lower aquifer is around three times more saline than the upper aquifer, water mixing into the upper water aquifer generates a salinity hazard.
Applying Rare Earth Elements, Uranium, and 87Sr/86Sr to Disentangle Structurally Forced Confluence of Regional Groundwater Resources: The Case of the Lower Yarmouk Gorge
The conjoint discussion of tectonic features, correlations of element concentrations, δ18O, δD, and 87Sr/86Sr of groundwater leads to new insight into sources of groundwater, their flow patterns, and salinization in the Yarmouk Basin. The sources of groundwater are precipitation infiltrating into basaltic rock or limestone aquifers. Leaching of relic brines and dissolution of gypsum and calcite from the limestone host rocks generate enhanced salinity in groundwater in different degrees. High U(VI) suggests leaching of U from phosphorite-rich Upper Cretaceous B2 formation. Both very low U(VI) and specific rare earth element including yttrium (REY) distribution patterns indicate interaction with ferric oxyhydroxides formed during weathering of widespread alkali olivine basalts in the catchment area. REY patterns of groundwater generated in basaltic aquifers are modified by interaction with underlying limestones. Repeated sampling over 18 years revealed that the flow paths towards certain wells of groundwater varied as documented by changes in concentrations of dissolved species and REY patterns and U(VI) contents. In the Yarmouk Gorge, groundwater with basaltic REY patterns but high U(VI) and low Sr2+ and intermediate sulfate concentrations mainly ascends in artesian wells tapping a buried flower structure fault system crossing the trend of the gorge.
A recipe to generate sustainably maintainable and extensible hydrogeological datasets to prepare large-scale groundwater models for multiple aquifer systems
Regional groundwater modelling can provide decision-makers and scientists with valuable information required for the sustainable use and protection of groundwater resources in the future. In order to assess and manage the impact of climate change on regional aquifer systems, numerical groundwater models are required which represent the subsurface structures of aquifers and aquitards in 3D at the regional scale and beyond in the most efficient way. A workflow to clearly generate these structural subsurface representations from a variety of data sources is introduced, applying open-source Geographical Information Systems. The resulting structural models can be used with finite element method-based simulation tools, such as the open-source environment OpenGeoSys. The preparation workflow of the structure model is presented for a large river basin in Germany, indicating the applicability of the method even in a challenging hydrogeological region with several stockworks of dipped and fractured sedimentary aquifers, partially showing significantly changing hydraulic conditions due to natural lateral facies changes.
Numerical analysis of the groundwater regime in the western Dead Sea escarpment, Israel + West Bank
Water is scarce in the semi-arid to arid regions around the Dead Sea, where water supply mostly relies on restricted groundwater resources. Due to increasing population in this region, the regional aquifer system is exposed to additional stress. This results in the continuous decrease in water level of the adjacent Dead Sea. The interaction of an increasing demand for water due to population growth and the decrease of groundwater resources will intensify in the near future. Thus, the water supply situation could worsen significantly unless sustainable water resource management is conducted. In this study, we develop a regional groundwater flow model of the eastern and southern Judea Group Aquifer to investigate the groundwater regime in the western Dead Sea drainage basin of Israel and the West Bank. An extensive geological database was developed and consequently a high-resolution structural model was derived. This structural model was the basis for various groundwater flow scenarios. The objective was to capture the spatial heterogeneity of the aquifer system and to apply these results to the southern part of the study area, which has not been studied in detail until now. As a result we analyzed quantitatively the flow regime, the groundwater mass balance and the hydraulic characteristics (hydraulic conductivity and hydraulic head) of the cretaceous aquifer system and calibrated them with PEST. The calibrated groundwater flow model can be used for integrated groundwater water management purposes in the Dead Sea area, especially within the framework of the SUMAR-Project.
A multi-environmental tracer study to determine groundwater residence times and recharge in a structurally complex multi-aquifer system
Despite being the main drinking water resource for over 5 million people, the water balance of the Eastern Mountain Aquifer system on the western side of the Dead Sea is poorly understood. The regional aquifer consists of fractured and karstified limestone – aquifers of Cretaceous age, and it can be separated into a Cenomanian aquifer (upper aquifer) and Albian aquifer (lower aquifer). Both aquifers are exposed along the mountain ridge around Jerusalem, which is the main recharge area. From here, the recharged groundwater flows in a highly karstified aquifer system towards the east and discharges in springs in the lower Jordan Valley and Dead Sea region. We investigated the Eastern Mountain Aquifer system for groundwater flow, groundwater age and potential mixtures, and groundwater recharge. We combined 36Cl ∕ Cl, tritium, and the anthropogenic gases SF6, CFC-12 (chlorofluorocarbon) and CFC-11, while using CFC-113 as “dating” tracers to estimate the young water components inside the Eastern Mountain Aquifer system. By application of lumped parameter models, we verified young groundwater components from the last 10 to 30 years and an admixture of a groundwater component older than about 70 years. Concentrations of nitrate, simazine (pesticide), acesulfame K (ACE-K; artificial sweetener) and naproxen (NAP; drug) in the groundwater were further indications of infiltration during the last 30 years. The combination of multiple environmental tracers and lumped parameter modelling helped to understand the groundwater age distribution and to estimate recharge despite scarce data in this very complex hydrogeological setting. Our groundwater recharge rates support groundwater management of this politically difficult area and can be used to inform and calibrate ongoing groundwater flow models.
Assessing anthropogenic impacts on limited water resources under semi-arid conditions: three-dimensional transient regional modelling in Jordan
Both increasing aridity and population growth strongly stress freshwater resources in semi-arid areas such as Jordan. The country’s second largest governorate, Irbid, with over 1 million inhabitants, is already suffering from an annual water deficit of 25 million cubic meters (MCM). The population is expected to double within the next 20 years. Even without the large number of refugees from Syria, the deficit will likely increase to more then 50 MCM per year by 2035 The Governorate’s exclusive resource is groundwater, abstracted by the extensive Al Arab and Kufr Asad well fields. This study presents the first three-dimensional transient regional groundwater flow model of the entire Wadi al Arab to answer important questions regarding the dynamic quality and availability of water within the catchment. Emphasis is given to the calculation and validation of the dynamic groundwater recharge, derived from a multi-proxy approach, including (1) a hydrological model covering a 30-years dataset, (2) groundwater level measurements and (3) information about springs. The model enables evaluation of the impact of abstraction on the flow regime and the groundwater budget of the resource. Sensitivity analyses of controlling parameters indicate that intense abstraction in the southern part of the Wadi al Arab system can result in critical water-level drops of 10 m at a distance of 16 km from the production wells. Moreover, modelling results suggest that observed head fluctuations are strongly controlled by anthropogenic abstraction rather than variable recharge rates due to climate changes.