Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
78
result(s) for
"Raimondi, Giorgio"
Sort by:
Immunoregulatory functions of mTOR inhibition
by
Turnquist, Hēth R.
,
Raimondi, Giorgio
,
Thomson, Angus W.
in
Animals
,
Antigen-Presenting Cells - immunology
,
Antigens
2009
Key Points
The atypical serine/threonine protein kinase mammalian target of rapamycin (mTOR) has an important role in the modulation of both innate and adaptive immune responses. A complex formed between the immunosuppressive drug rapamycin and the immunophilin FK506-binding protein 1A, 12 kDA (FKBP12) inhibits mTOR kinase activity.
mTOR functions in at least two multi-protein complexes: mTOR complex 1 (mTORC1) and mTORC2. mTOR in mTORC1 is highly sensitive to inhibition by rapamycin, whereas mTOR in mTORC2 is resistant to rapamycin. mTORC1 regulates cell growth downstream of phosphoinositide 3-kinase–AKT signalling, in which active mTORC1 phosphorylates S6 kinase (S6K1) and the eukaryotic translation initiation factor-binding protein 1 (EIF4EBP1). Both of these activities promote mRNA translation and cell growth.
Rapamycin exerts many effects on the differentiation and function of professional antigen-presenting cells (APCs). mTOR inhibition by rapamycin impedes antigen uptake and can modulate antigen presentation by dendritic cells (DCs); its differential effects on cytokine production and chemokine receptor expression by DCs regulate interactions between innate and adaptive immune cells.
Recent findings have shed light on previously unappreciated effects of mTOR inhibition on T cells. Rapamycin induces thymic involution, whereas the ontogeny of naturally occurring regulatory T (T
Reg
) cells seems to be less affected. During conventional T cell activation, rapamycin-mediated mTOR inhibition blocks cell cycle progression and can sequester activated T cells in secondary lymphoid tissues. By contrast, rapamycin causes an increase in the frequency of FOXP3 (forkhead box P3)
+
T cells, reflecting both the ability of T
Reg
cells to proliferate in the presence of rapamycin and the promotion of FOXP3 expression in peripheral T cells that are then converted into modulators of immune reactivity.
mTOR inhibition is a promising therapeutic strategy to prevent rejection in transplantation and for autoimmune disease. Differential effects of rapamycin on T cells and T
Reg
cells (both naturally occurring and inducible) favour its ability to promote tolerance in tolerance-enhancing protocols. In addition, adoptively transferred rapamycin-conditioned APCs inhibit organ allograft rejection and graft-versus-host disease following haematopoietic cell transplantation.
Ongoing and future areas of enquiry, which could prove fruitful, include distinguishing the role of mTORC1 and mTORC2 in the regulation of immune responses and tolerance, investigating the role of the mTOR–survivin–aurora B complex in T cell activation and ascertaining the mechanisms that determine T
Reg
cell resistance to rapamycin and mTOR-mediated regulation of FOXP3 expression, as well as their relevance to therapy.
Angus Thomson and colleagues describe the consequences of mammalian target of rapamycin (mTOR) inhibition by rapamycin on dendritic cells, effector T cells and regulatory T cells. These effects make mTOR inhibition a promising immunosuppressive, but tolerance-promoting, therapeutic strategy.
The potent immunosuppressive action of rapamycin is commonly ascribed to inhibition of growth factor-induced T cell proliferation. However, it is now evident that the serine/threonine protein kinase mammalian target of rapamycin (mTOR) has an important role in the modulation of both innate and adaptive immune responses. mTOR regulates diverse functions of professional antigen-presenting cells, such as dendritic cells (DCs), and has important roles in the activation of effector T cells and the function and proliferation of regulatory T cells. In this Review, we discuss our current understanding of the mTOR pathway and the consequences of mTOR inhibition, both in DCs and T cells, including new data on the regulation of forkhead box P3 expression.
Journal Article
Jakinibs of All Trades: Inhibiting Cytokine Signaling in Immune-Mediated Pathologies
by
Luo, Yiming
,
O’Shea, John J.
,
Gadina, Massimo
in
Arthritis
,
autoimmune diseases
,
Biological products
2021
Over the last 25 years, inhibition of Janus kinases (JAKs) has been pursued as a modality for treating various immune and inflammatory disorders. While the clinical development of JAK inhibitors (jakinibs) began with the investigation of their use in allogeneic transplantation, their widest successful application came in autoimmune and allergic diseases. Multiple molecules have now been approved for diseases ranging from rheumatoid and juvenile arthritis to ulcerative colitis, atopic dermatitis, graft-versus-host-disease (GVHD) and other inflammatory pathologies in 80 countries around the world. Moreover, two jakinibs have also shown surprising efficacy in the treatment of hospitalized coronavirus disease-19 (COVID-19) patients, indicating additional roles for jakinibs in infectious diseases, cytokine storms and other hyperinflammatory syndromes. Jakinibs, as a class of pharmaceutics, continue to expand in clinical applications and with the development of more selective JAK-targeting and organ-selective delivery. Importantly, jakinib safety and pharmacokinetics have been investigated alongside clinical development, further cementing the potential benefits and limits of jakinib use. This review covers jakinibs that are approved or are under late phase investigation, focusing on clinical applications, pharmacokinetic and safety profiles, and future opportunities and challenges.
Journal Article
Targeting inflammation and immune activation to improve CTLA4-Ig-based modulation of transplant rejection
by
Larsen, Christian P.
,
Brennan, Daniel C.
,
Raimondi, Giorgio
in
Allografts
,
Bone marrow
,
Calcineurin inhibitors
2022
For the last few decades, Calcineurin inhibitors (CNI)-based therapy has been the pillar of immunosuppression for prevention of organ transplant rejection. However, despite exerting effective control of acute rejection in the first year post-transplant, prolonged CNI use is associated with significant side effects and is not well suited for long term allograft survival. The implementation of Costimulation Blockade (CoB) therapies, based on the interruption of T cell costimulatory signals as strategy to control allo-responses, has proven potential for better management of transplant recipients compared to CNI-based therapies. The use of the biologic cytotoxic T-lymphocyte associated protein 4 (CTLA4)-Ig is the most successful approach to date in this arena. Following evaluation of the BENEFIT trials, Belatacept, a high-affinity version of CTLA4-Ig, has been FDA approved for use in kidney transplant recipients. Despite its benefits, the use of CTLA4-Ig as a monotherapy has proved to be insufficient to induce long-term allograft acceptance in several settings. Multiple studies have demonstrated that events that induce an acute inflammatory response with the consequent release of proinflammatory cytokines, and an abundance of allograft-reactive memory cells in the recipient, can prevent the induction of or break established immunomodulation induced with CoB regimens. This review highlights advances in our understanding of the factors and mechanisms that limit CoB regimens efficacy. We also discuss recent successes in experimentally designing complementary therapies that favor CTLA4-Ig effect, affording a better control of transplant rejection and supporting their clinical applicability.
Journal Article
Tregs integrate native and CAR-mediated costimulatory signals for control of allograft rejection
by
Salim, Kevin
,
Mojibian, Majid
,
Boardman, Dominic A.
in
Alloantibodies
,
Allografts
,
Allografts - metabolism
2023
Tregs expressing chimeric antigen receptors (CAR-Tregs) are a promising tool to promote transplant tolerance. The relationship between CAR structure and Treg function was studied in xenogeneic, immunodeficient mice, revealing advantages of CD28-encoding CARs. However, these models could underrepresent interactions between CAR-Tregs, antigen-presenting cells (APCs), and donor-specific Abs. We generated Tregs expressing HLA-A2-specific CARs with different costimulatory domains and compared their function in vitro and in vivo using an immunocompetent model of transplantation. In vitro, the CD28-encoding CAR had superior antigen-specific suppression, proliferation, and cytokine production. In contrast, in vivo, Tregs expressing CARs encoding CD28, ICOS, programmed cell death 1, and GITR, but not 4-1BB or OX40, all extended skin allograft survival. To reconcile in vitro and in vivo data, we analyzed effects of a CAR encoding CD3ζ but no costimulatory domain. These data revealed that exogenous costimulation from APCs can compensate for the lack of a CAR-encoded CD28 domain. Thus, Tregs expressing a CAR with or without CD28 are functionally equivalent in vivo, mediating similar extension of skin allograft survival and controlling the generation of anti-HLA-A2 alloantibodies. This study reveals a dimension of CAR-Treg biology and has important implications for the design of CARs for clinical use in Tregs.
Journal Article
Human Induced Pluripotent Stem Cell-Derived Models to Investigate Human Cytomegalovirus Infection in Neural Cells
2012
Human cytomegalovirus (HCMV) infection is one of the leading prenatal causes of congenital mental retardation and deformities world-wide. Access to cultured human neuronal lineages, necessary to understand the species specific pathogenic effects of HCMV, has been limited by difficulties in sustaining primary human neuronal cultures. Human induced pluripotent stem (iPS) cells now provide an opportunity for such research. We derived iPS cells from human adult fibroblasts and induced neural lineages to investigate their susceptibility to infection with HCMV strain Ad169. Analysis of iPS cells, iPS-derived neural stem cells (NSCs), neural progenitor cells (NPCs) and neurons suggests that (i) iPS cells are not permissive to HCMV infection, i.e., they do not permit a full viral replication cycle; (ii) Neural stem cells have impaired differentiation when infected by HCMV; (iii) NPCs are fully permissive for HCMV infection; altered expression of genes related to neural metabolism or neuronal differentiation is also observed; (iv) most iPS-derived neurons are not permissive to HCMV infection; and (v) infected neurons have impaired calcium influx in response to glutamate.
Journal Article
Engineered cytokine/antibody fusion proteins improve IL-2 delivery to pro-inflammatory cells and promote antitumor activity
by
Leonard, Warren J.
,
Cao, Shanelle D.
,
Lin, Jian-Xin
in
Amino acids
,
Animals
,
Antitumor activity
2024
Progress in cytokine engineering is driving therapeutic translation by overcoming these proteins' limitations as drugs. The IL-2 cytokine is a promising immune stimulant for cancer treatment but is limited by its concurrent activation of both pro-inflammatory immune effector cells and antiinflammatory regulatory T cells, toxicity at high doses, and short serum half-life. One approach to improve the selectivity, safety, and longevity of IL-2 is complexing with anti-IL-2 antibodies that bias the cytokine toward immune effector cell activation. Although this strategy shows potential in preclinical models, clinical translation of a cytokine/antibody complex is complicated by challenges in formulating a multiprotein drug and concerns regarding complex stability. Here, we introduced a versatile approach to designing intramolecularly assembled single-agent fusion proteins (immunocytokines, ICs) comprising IL-2 and a biasing anti-IL-2 antibody that directs the cytokine toward immune effector cells. We optimized IC construction and engineered the cytokine/antibody affinity to improve immune bias. We demonstrated that our IC preferentially activates and expands immune effector cells, leading to superior antitumor activity compared with natural IL-2, both alone and combined with immune checkpoint inhibitors. Moreover, therapeutic efficacy was observed without inducing toxicity. This work presents a roadmap for the design and translation of cytokine/antibody fusion proteins.
Journal Article
Type-I Interferons Inhibit Interleukin-10 Signaling and Favor Type 1 Diabetes Development in Nonobese Diabetic Mice
by
Arun, Anirudh
,
Lee, W. P. A.
,
Iglesias, Marcos
in
Antibodies
,
Autoimmune diseases
,
Beta cells
2018
Destruction of insulin-producing β-cells by autoreactive T lymphocytes leads to the development of type 1 diabetes. Type-I interferons (TI-IFN) and interleukin-10 (IL-10) have been connected with the pathophysiology of this disease; however, their interplay in the modulation of diabetogenic T cells remains unknown. We have discovered that TI-IFN cause a selective inhibition of IL-10 signaling in effector and regulatory T cells, altering their responses. This correlates with diabetes development in nonobese diabetic mice, where the inhibition is also spatially localized to T cells of pancreatic and mesenteric lymph nodes. IL-10 signaling inhibition is reversible and can be restored
blockade of TI-IFN/IFN-R interaction, paralleling with the resulting delay in diabetes onset and reduced severity. Overall, we propose a novel molecular link between TI-IFN and IL-10 signaling that helps better understand the complex dynamics of autoimmune diabetes development and reveals new strategies of intervention.
Journal Article
Combining Theoretical and Experimental Techniques to Study Murine Heart Transplant Rejection
by
Maturo, Andrew
,
Oh, Byoung Chol
,
Arun, Anirudh
in
Adaptive immunity
,
Antigen presentation
,
antigen presenting cells
2016
The quality of life of organ transplant recipients is compromised by complications associated with life-long immunosuppression, such as hypertension, diabetes, opportunistic infections, and cancer. Moreover, the absence of established tolerance to the transplanted tissues causes limited long-term graft survival rates. Thus, there is a great medical need to understand the complex immune system interactions that lead to transplant rejection so that novel and effective strategies of intervention that redirect the system toward transplant acceptance (while preserving overall immune competence) can be identified. This study implements a systems biology approach in which an experimentally based mathematical model is used to predict how alterations in the immune response influence the rejection of mouse heart transplants. Five stages of conventional mouse heart transplantation are modeled using a system of 13 ordinary differential equations that tracks populations of both innate and adaptive immunity as well as proxies for pro- and anti-inflammatory factors within the graft and a representative draining lymph node. The model correctly reproduces known experimental outcomes, such as indefinite survival of the graft in the absence of CD4
T cells and quick rejection in the absence of CD8
T cells. The model predicts that decreasing the translocation rate of effector cells from the lymph node to the graft delays transplant rejection. Increasing the starting number of quiescent regulatory T cells in the model yields a significant but somewhat limited protective effect on graft survival. Surprisingly, the model shows that a delayed appearance of alloreactive T cells has an impact on graft survival that does not correlate linearly with the time delay. This computational model represents one of the first comprehensive approaches toward simulating the many interacting components of the immune system. Despite some limitations, the model provides important suggestions of experimental investigations that could improve the understanding of rejection. Overall, the systems biology approach used here is a first step in predicting treatments and interventions that can induce transplant tolerance while preserving the capacity of the immune system to protect against legitimate pathogens.
Journal Article
Editorial: Transplant Rejection and Tolerance—Advancing the Field through Integration of Computational and Experimental Investigation
by
Raimondi, Giorgio
,
Arciero, Julia C.
,
Wood, Kathryn J.
in
60 APPLIED LIFE SCIENCES
,
Animal models
,
big data and bioinformatics
2017
[...]the debilitating side effects of the long-term use of these drugs, together with their incomplete control of the immune system, compromise the quality of life and survival of transplant recipients. [...]there is a strong push to find new therapeutic strategies that promote indefinite acceptance of a transplanted tissue without compromising the effectiveness of the patient’s immune system. When studying the inflammatory response associated with ischemic injury,Starzl et al.combined principal component analysis and a regression approach to discover a cytokine-based signature to define the type and severity of the inflammatory response. An agent-based model presented byAnprovides a dynamic and mechanistic understanding of transplant immunology so that control strategies to induce tolerance can be built.Arciero et al.provide one of the first comprehensive mathematical models of mouse heart transplant rejection.
Journal Article