Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
109 result(s) for "Rasko, John E. J."
Sort by:
IRFinder: assessing the impact of intron retention on mammalian gene expression
Intron retention (IR) occurs when an intron is transcribed into pre-mRNA and remains in the final mRNA. We have developed a program and database called IRFinder to accurately detect IR from mRNA sequencing data. Analysis of 2573 samples showed that IR occurs in all tissues analyzed, affects over 80% of all coding genes and is associated with cell differentiation and the cell cycle. Frequently retained introns are enriched for specific RNA binding protein sites and are often retained in clusters in the same gene. IR is associated with lower protein levels and intron-retaining transcripts that escape nonsense-mediated decay are not actively translated.
Endothelial E-selectin inhibition improves acute myeloid leukaemia therapy by disrupting vascular niche-mediated chemoresistance
The endothelial cell adhesion molecule E-selectin is a key component of the bone marrow hematopoietic stem cell (HSC) vascular niche regulating balance between HSC self-renewal and commitment. We now report in contrast, E-selectin directly triggers signaling pathways that promote malignant cell survival and regeneration. Using acute myeloid leukemia (AML) mouse models, we show AML blasts release inflammatory mediators that upregulate endothelial niche E-selectin expression. Alterations in cell-surface glycosylation associated with oncogenesis enhances AML blast binding to E-selectin and enable promotion of pro-survival signaling through AKT/NF-κB pathways. In vivo AML blasts with highest E-selectin binding potential are 12-fold more likely to survive chemotherapy and main contributors to disease relapse. Absence (in Sele −/− hosts) or therapeutic blockade of E-selectin using small molecule mimetic GMI-1271/Uproleselan effectively inhibits this niche-mediated pro-survival signaling, dampens AML blast regeneration, and strongly synergizes with chemotherapy, doubling the duration of mouse survival over chemotherapy alone, whilst protecting endogenous HSC. The cell adhesion molecule E-selectin regulates haematopoietic stem cell self-renewal in the bone marrow vascular niche. Here, the authors show E-selectin adhesion directly induces survival signaling in acute myeloid leukaemia and therapeutic inhibition improves chemotherapy outcomes in mice.
Intron retention enhances gene regulatory complexity in vertebrates
Background While intron retention (IR) is now widely accepted as an important mechanism of mammalian gene expression control, it remains the least studied form of alternative splicing. To delineate conserved features of IR, we performed an exhaustive phylogenetic analysis in a highly purified and functionally defined cell type comprising neutrophilic granulocytes from five vertebrate species spanning 430 million years of evolution. Results Our RNA-sequencing-based analysis suggests that IR increases gene regulatory complexity, which is indicated by a strong anti-correlation between the number of genes affected by IR and the number of protein-coding genes in the genome of individual species. Our results confirm that IR affects many orthologous or functionally related genes in granulocytes. Further analysis uncovers new and unanticipated conserved characteristics of intron-retaining transcripts. We find that intron-retaining genes are transcriptionally co-regulated from bidirectional promoters. Intron-retaining genes have significantly longer 3′ UTR sequences, with a corresponding increase in microRNA binding sites, some of which include highly conserved sequence motifs. This suggests that intron-retaining genes are highly regulated post-transcriptionally. Conclusions Our study provides unique insights concerning the role of IR as a robust and evolutionarily conserved mechanism of gene expression regulation. Our findings enhance our understanding of gene regulatory complexity by adding another contributor to evolutionary adaptation.
Implicit hype? Representations of platelet rich plasma in the news media
Examines the portrayals of platelet rich plasma (PRP), which has become increasingly popular in the past decade for treating sports-related musculoskeletal injuries, in English-language newspapers published in Australia, Canada, Ireland, NZ, the UK, and the USA. Argues that while news media coverage of PRP exhibits very few common hallmarks of hype, its portrayal as a routine treatment used by elite athletes and celebrities creates an implicit hype which can contribute to public misunderstandings of the efficacy of PRP. Source: National Library of New Zealand Te Puna Matauranga o Aotearoa, licensed by the Department of Internal Affairs for re-use under the Creative Commons Attribution 3.0 New Zealand Licence.
Genetic alterations of m6A regulators predict poorer survival in acute myeloid leukemia
Methylation of N 6 adenosine (m 6 A) is known to be important for diverse biological processes including gene expression control, translation of protein, and messenger RNA (mRNA) splicing. However, its role in the development of human cancers is poorly understood. By analyzing datasets from the Cancer Genome Atlas Research Network (TCGA) acute myeloid leukemia (AML) study, we discover that mutations and/or copy number variations of m 6 A regulatory genes are strongly associated with the presence of TP53 mutations in AML patients. Further, our analyses reveal that alterations in m 6 A regulatory genes confer a worse survival in AML. Our work indicates that genetic alterations of m 6 A regulatory genes may cooperate with TP53 and/or its regulator/downstream targets in the pathogenesis and/or maintenance of AML.
Anti-Mesothelin CAR T cell therapy for malignant mesothelioma
Malignant mesothelioma (MM) is a treatment-resistant tumor originating in the mesothelial lining of the pleura or the abdominal cavity with very limited treatment options. More effective therapeutic approaches are urgently needed to improve the poor prognosis of MM patients. Chimeric Antigen Receptor (CAR) T cell therapy has emerged as a novel potential treatment for this incurable solid tumor. The tumor-associated antigen mesothelin (MSLN) is an attractive target for cell therapy in MM, as this antigen is expressed at high levels in the diseased pleura or peritoneum in the majority of MM patients and not (or very modestly) present in healthy tissues. Clinical trials using anti-MSLN CAR T cells in MM have shown that this potential therapeutic is relatively safe. However, efficacy remains modest, likely due to the MM tumor microenvironment (TME), which creates strong immunosuppressive conditions and thus reduces anti-MSLN CAR T cell tumor infiltration, efficacy and persistence. Various approaches to overcome these challenges are reviewed here. They include local (intratumoral) delivery of anti-MSLN CAR T cells, improved CAR design and co-stimulation, and measures to avoid T cell exhaustion. Combination therapies with checkpoint inhibitors as well as oncolytic viruses are also discussed. Preclinical studies have confirmed that increased efficacy of anti-MSLN CAR T cells is within reach and offer hope that this form of cellular immunotherapy may soon improve the prognosis of MM patients.
Circulating tumor cells: advancing personalized therapy in small cell lung cancer patients
Small cell lung cancer (SCLC) is a highly aggressive cancer with a dismal 5‐year survival of < 7%, despite the addition of immunotherapy to first‐line chemotherapy. Specific tumor biomarkers, such as delta‐like ligand 3 (DLL3) and schlafen11 (SLFN11), may enable the selection of more efficacious, novel immunomodulating targeted treatments like bispecific T‐cell engaging monoclonal antibodies (tarlatamab) and chemotherapy with PARP inhibitors. However, obtaining a tissue biopsy sample can be challenging in SCLC. Circulating tumor cells (CTCs) have the potential to provide molecular insights into a patient's cancer through a “simple” blood test. CTCs have been studied for their prognostic ability in SCLC; however, their value in guiding treatment decisions is yet to be elucidated. This review explores novel and promising targeted therapies in SCLC, summarizes current knowledge of CTCs in SCLC, and discusses how CTCs can be utilized for precision medicine. Small cell lung cancer (SCLC) is an aggressive form of lung cancer that spreads rapidly to secondary sites such as the brain and liver. Cancer cells circulating in the blood, “circulating tumor cells” (CTCs), have demonstrated prognostic value in SCLC, and evaluating biomarkers on CTCs could guide treatment decisions such as for PARP inhibitors (schlafen11) and immunotherapies (PD‐L1 and DLL3).
Advances in targeted therapy for malignant lymphoma
The incidence of lymphoma has gradually increased over previous decades, and it ranks among the ten most prevalent cancers worldwide. With the development of targeted therapeutic strategies, though a subset of lymphoma patients has become curable, the treatment of refractory and relapsed diseases remains challenging. Many efforts have been made to explore new targets and to develop corresponding therapies. In addition to novel antibodies targeting surface antigens and small molecular inhibitors targeting oncogenic signaling pathways and tumor suppressors, immune checkpoint inhibitors and chimeric antigen receptor T-cells have been rapidly developed to target the tumor microenvironment. Although these targeted agents have shown great success in treating lymphoma patients, adverse events should be noted. The selection of the most suitable candidates, optimal dosage, and effective combinations warrant further investigation. In this review, we systematically outlined the advances in targeted therapy for malignant lymphoma, providing a clinical rationale for mechanism-based lymphoma treatment in the era of precision medicine.
Substrate elasticity provides mechanical signals for the expansion of hemopoietic stem and progenitor cells
Biomechanical forces may be an effective approach for controlling the behavior of stem cells in vitro . Holst et al . show that the elasticity of a tropoelastin matrix expands hematopoietic stem and progenitor cells. Surprisingly little is known about the effects of the physical microenvironment on hemopoietic stem and progenitor cells. To explore the physical effects of matrix elasticity on well-characterized primitive hemopoietic cells, we made use of a uniquely elastic biomaterial, tropoelastin. Culturing mouse or human hemopoietic cells on a tropoelastin substrate led to a two- to threefold expansion of undifferentiated cells, including progenitors and mouse stem cells. Treatment with cytokines in the presence of tropoelastin had an additive effect on this expansion. These biological effects required substrate elasticity, as neither truncated nor cross-linked tropoelastin reproduced the phenomenon, and inhibition of mechanotransduction abrogated the effects. Our data suggest that substrate elasticity and tensegrity are important mechanisms influencing hemopoietic stem and progenitor cell subsets and could be exploited to facilitate cell culture.
Towards resolution of the intron retention paradox in breast cancer
Background After many years of neglect in the field of alternative splicing, the importance of intron retention (IR) in cancer has come into focus following landmark discoveries of aberrant IR patterns in cancer. Many solid and liquid tumours are associated with drastic increases in IR, and such patterns have been pursued as both biomarkers and therapeutic targets. Paradoxically, breast cancer (BrCa) is the only tumour type in which IR is reduced compared to adjacent normal breast tissue. Methods In this study, we have conducted a pan-cancer analysis of IR with emphasis on BrCa and its subtypes. We explored mechanisms that could cause aberrant and pathological IR and clarified why normal breast tissue has unusually high IR. Results Strikingly, we found that aberrantly decreasing IR in BrCa can be largely attributed to normal breast tissue having the highest occurrence of IR events compared to other healthy tissues. Our analyses suggest that low numbers of IR events in breast tumours are associated with poor prognosis, particularly in the luminal B subtype. Interestingly, we found that IR frequencies negatively correlate with cell proliferation in BrCa cells, i.e. rapidly dividing tumour cells have the lowest number of IR events. Aberrant RNA-binding protein expression and changes in tissue composition are among the causes of aberrantly decreasing IR in BrCa. Conclusions Our results suggest that IR should be considered for therapeutic manipulation in BrCa patients with aberrantly low IR levels and that further work is needed to understand the cause and impact of high IR in other tumour types.