Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
26 result(s) for "Ren, Kehan"
Sort by:
BMAL1 regulates mitochondrial fission and mitophagy through mitochondrial protein BNIP3 and is critical in the development of dilated cardiomyopathy
Dysregulation of circadian rhythms associates with cardiovascular disorders. It is known that deletion of the core circadian gene Bmal1 in mice causes dilated cardiomyopathy. However, the biological rhythm regulation system in mouse is very different from that of humans. Whether BMAL1 plays a role in regulating human heart function remains unclear. Here we generated a BMAL1 knockout human embryonic stem cell (hESC) model and further derived human BMAL1 deficient cardiomyocytes. We show that BMAL1 deficient hESC-derived cardiomyocytes exhibited typical phenotypes of dilated cardiomyopathy including attenuated contractility, calcium dysregulation, and disorganized myofilaments. In addition, mitochondrial fission and mitophagy were suppressed in BMAL1 deficient hESC-cardiomyocytes, which resulted in significantly attenuated mitochondrial oxidative phosphorylation and compromised cardiomyocyte function. We also found that BMAL1 binds to the E-box element in the promoter region of BNIP3 gene and specifically controls BNIP3 protein expression. BMAL1 knockout directly reduced BNIP3 protein level, causing compromised mitophagy and mitochondria dysfunction and thereby leading to compromised cardiomyocyte function. Our data indicated that the core circadian gene BMAL1 is critical for normal mitochondria activities and cardiac function. Circadian rhythm disruption may directly link to compromised heart function and dilated cardiomyopathy in humans.
PPIL2 is a target of the JAK2/STAT5 pathway and promotes myeloproliferation via degradation of p53
The activated JAK2/STAT pathway is characteristic of myeloproliferative neoplasms (MPNs). The pleckstrin 2 (PLEK2) signalosome is downstream of the JAK2/STAT5 pathway and plays an important role in MPN development. The detailed molecular composition of this signalosome is unclear. Here, we reveal peptidylprolyl isomerase-like 2 (PPIL2) as a critical component of the complex in regulating human and murine erythropoiesis. PPIL2 was a direct target of STAT5 and was upregulated in patients with MPN and in a Jak2V617F MPN mouse model. Mechanistically, PPIL2 interacted with and catalyzed p53 polyubiquitination and proteasome-mediated degradation to promote cell growth. Ppil2 deficiency, or inhibition by cyclosporin A, led to a marked upregulation of p53 in vivo and ameliorated myeloproliferative phenotypes in Jak2V617F mice. Cyclosporin A also markedly reduced JAK2-mutated erythroid and myeloid proliferation in an induced pluripotent stem cell-derived human bone marrow organoid model. Our findings reveal PPIL2 as a critical component of the PLEK2 signalosome in driving MPN pathogenesis through negative regulation of p53, thus providing a target and opportunity for drug repurposing using cyclosporin A to treat MPNs.
Bone marrow–confined IL-6 signaling mediates the progression of myelodysplastic syndromes to acute myeloid leukemia
Myelodysplastic syndromes (MDS) are age-related myeloid neoplasms with Increased risk of progression to acute myeloid leukemia (AML). The mechanisms of transformation of MDS to AML are poorly understood, especially in relation to the aging microenvironment. We previously established an mDia1/miR-146a double knockout (DKO) mouse model phenocopying MDS. These mice develop age-related pancytopenia with oversecretion of proinflammatory cytokines. Here, we found that most of the DKO mice underwent leukemic transformation at 12-14 months of age. These mice showed myeloblast replacement of fibrotic bone marrow and widespread leukemic infiltration. Strikingly, depletion of IL-6 in these mice largely rescued the leukemic transformation and markedly extended survival. Single-cell RNA sequencing analyses revealed that DKO leukemic mice had increased monocytic blasts that were reduced with IL-6 knockout. We further revealed that the levels of surface and soluble IL-6 receptor (IL-6R) in the bone marrow were significantly increased in high-risk MDS patients. Similarly, IL-6R was also highly expressed in older DKO mice. Blocking of IL-6 signaling significantly ameliorated AML progression in the DKO model and clonogenicity of CD34-positive cells from MDS patients. Our study establishes a mouse model of progression of age-related MDS to AML and indicates the clinical significance of targeting IL-6 signaling in treating high-risk MDS.
DDX41 resolves G-quadruplexes to maintain erythroid genome integrity and prevent cGAS-mediated cell death
Deleterious germline DDX41 variants constitute the most common inherited predisposition disorder linked to myeloid neoplasms (MNs), yet their role in MNs remains unclear. Here we show that DDX41 is essential for erythropoiesis but dispensable for other hematopoietic lineages. Ddx41 knockout in early erythropoiesis is embryonically lethal, while knockout in late-stage terminal erythropoiesis allows mice to survive with normal blood counts. DDX41 deficiency induces a significant upregulation of G-quadruplexes (G4), which co-distribute with DDX41 on the erythroid genome. DDX41 directly binds to and resolves G4, which is significantly compromised in MN-associated DDX41 mutants. G4 accumulation induces erythroid genome instability, ribosomal defects, and p53 upregulation. However, p53 deficiency does not rescue the embryonic death of Ddx41 hematopoietic-specific knockout mice. In parallel, genome instability also activates the cGas-Sting pathway, impairing survival, as cGas deficiency rescues the lethality of hematopoietic-specific Ddx41 knockout mice. This is supported by data from a DDX41-mutated MN patient and human iPSC-derived bone marrow organoids. Our study establishes DDX41 as a G4 resolvase, essential for erythroid genome stability and suppressing the cGAS-STING pathway. Germline DDX41 mutations are linked to myeloid neoplasms, but their roles in the disease is unclear. Here, the authors show that DDX41 resolves G-quadruplex structures to maintain erythroid genome stability and prevent cGAS-mediated cell death. These functions are lost in disease-associated variants.
Long non‐coding RNA RACGAP1P promotes breast cancer invasion and metastasis via miR‐345‐5p/RACGAP1‐mediated mitochondrial fission
In this study, we illustrate the potential mechanism of RACGAP1P implicated in breast cancer invasion and metastasis. In breast cancer cells, RACGAP1P could competitively bind to miR‐345‐5p, which targets RACGAP1, and therefore up‐regulate RACGAP1. RACGAP1P overexpression promoted mitochondrial fission‐mediated cell invasion via the RACGAP1P/miR‐345‐5p/RACGAP1/Drp1 network. Long non‐coding RNAs (lncRNAs) are emerging as key molecules in various cancers, yet their potential roles in the pathogenesis of breast cancer are not fully understood. Herein, using microarray analysis, we revealed that the lncRNA RACGAP1P, the pseudogene of Rac GTPase activating protein 1 (RACGAP1), was up‐regulated in breast cancer tissues. Its high expression was confirmed in 25 pairs of breast cancer tissues and 8 breast cell lines by qRT‐PCR. Subsequently, we found that RACGAP1P expression was positively correlated with lymph node metastasis, distant metastasis, TNM stage, and shorter survival time in 102 breast cancer patients. Then, in vitro and in vivo experiments were designed to investigate the biological function and regulatory mechanism of RACGAP1P in breast cancer cell lines. Overexpression of RACGAP1P in MDA‐MB‐231 and MCF7 breast cell lines increased their invasive ability and enhanced their mitochondrial fission. Conversely, inhibition of mitochondrial fission by Mdivi‐1 could reduce the invasive ability of RACGAP1P‐overexpressing cell lines. Furthermore, the promotion of mitochondrial fission by RACGAP1P depended on its competitive binding with miR‐345‐5p against its parental gene RACGAP1, leading to the activation of dynamin‐related protein 1 (Drp1). In conclusion, lncRNA RACGAP1P promotes breast cancer invasion and metastasis via miR‐345‐5p/RACGAP1 pathway‐mediated mitochondrial fission.
mDia formins form hetero-oligomers and cooperatively maintain murine hematopoiesis
mDia formin proteins regulate the dynamics and organization of the cytoskeleton through their linear actin nucleation and polymerization activities. We previously showed that mDia1 deficiency leads to aberrant innate immune activation and induces myelodysplasia in a mouse model, and mDia2 regulates enucleation and cytokinesis of erythroblasts and the engraftment of hematopoietic stem and progenitor cells (HSPCs). However, whether and how mDia formins interplay and regulate hematopoiesis under physiological and stress conditions remains unknown. Here, we found that both mDia1 and mDia2 are required for HSPC regeneration under stress, such as serial plating, aging, and reconstitution after myeloid ablation. We showed that mDia1 and mDia2 form hetero-oligomers through the interactions between mDia1 GBD-DID and mDia2 DAD domains. Double knockout of mDia1 and mDia2 in hematopoietic cells synergistically impaired the filamentous actin network and serum response factor-involved transcriptional signaling, which led to declined HSPCs, severe anemia, and significant mortality in neonates and newborn mice. Our data demonstrate the potential roles of mDia hetero-oligomerization and their non-rodent functions in the regulation of HSPCs activity and orchestration of hematopoiesis.
3D map-guided modeling of functional endometrial tissue using multi-compartment assembloids
The human endometrium is a dynamic tissue that lines the uterus and undergoes constant remodeling, making it especially susceptible to gynecological diseases like endometriosis and endometrial cancer. The molecular mechanisms of these conditions are not well understood, partly due to the lack of in vitro models that mimic endometrial physiology, which limits options for targeted intervention and treatment of these diseases. Mouse models are also inadequate, as common laboratory strains do not naturally undergo a menstrual cycle comparable to that of humans. This study addresses this need by developing a 3D multi-compartment assembloid that mimics the architecture of endometrial tissue and recapitulates all three phases of the menstrual cycle (proliferative, secretory, and menstrual regression) within a single platform. The cellular and extracellular matrix (ECM) components in each compartment are carefully tuned based on a 3D spatial cellular map of endometrial tissue. The model contains endometrial epithelial cells enveloped in a basement membrane and endometrial stromal cells in a surrounding collagen-rich layer; this architecture allows realistic interactions between these cells and their respective ECMs. This assembloid successfully supports the controlled growth and organization of these cells, revealing reciprocal regulation of cell behavior and exhibiting compartment-specific hormonal responses, i.e., stromal decidualization. This platform enables the study of dynamic, phase-resolved, and compartment-specific paracrine signaling in human endometrial biology. By combining tissue-informed design, modular fabrication, and full-cycle hormonal responsiveness, this model sets a new benchmark for blastocyst implantation studies, organ modeling, and precision diagnostics in human reproductive health.
SETDB1 induces epithelial-mesenchymal transition in breast carcinoma by directly binding with Snail promoter
SET domain bifurcated 1 (SETDB1) is a histone H3 lysine 9 methyltransferase that is highly expressed in various tumor types, including breast cancer. However, how SETDB1 functions in breast cancer is unclear. In the present study, proliferation, migration and invasion assays were performed to explore the role of SETDB1 in breast cancer cells. SETDB1 downregulation in BT549 and MDA-MB-231 cells reduced cell proliferation, whereas upregulation in MCF7 and T47D cells enhanced proliferation. Depletion of SETDB1 suppressed cell migration and invasion in vitro and reduced lung metastasis in vivo. By contrast, SETDB1 overexpression enhanced cell migration and invasiveness. Notably, SETDB1 overexpression appeared to induce epithelial-mesenchymal transition (EMT) in MCF7 cells. Mechanistic investigations indicated that SETDB1 acts as an EMT inducer by binding directly to the promoter of the transcription factor Snail. Thus, SETDB1 is involved in breast cancer metastasis and may be a therapeutic target for treating patients with breast cancer.
PPIL2 is a target of the JAK2/STAT5 pathway and promotes myeloproliferation via p53-mediated degradation
The activated JAK2/STAT pathway is characteristic of myeloproliferative neoplasms (MPNs). Pleckstrin-2 (PLEK2) signalosome is downstream of the JAK2/STAT5 pathway and plays an important role in MPN development. The detailed molecular composition of this signalosome is unclear. Here, we revealed peptidylprolyl isomerase-like 2 (PPIL2) as a critical component of the complex in regulating human and murine erythropoiesis. PPIL2 was a direct target of STAT5 and was upregulated in MPN patients and a Jak2V617F MPN mouse model. Mechanistically, PPIL2 interacted with and catalyzed p53 polyubiquitination and proteasome-mediated degradation to promote cell growth. Ppil2 deficiency, or inhibition by cyclosporin A, led to a marked upregulation of p53 in vivo and ameliorated myeloproliferative phenotypes in Jak2V617F mice. Cyclosporin A also markedly reduced JAK2 mutated erythroid and myeloid proliferation in an induced pluripotent stem cell-derived human bone marrow organoid model. Our findings revealed PPIL2 as a critical component of the PLEK2 signalosome in driving MPN pathogenesis through negatively regulating p53, thus providing a target and an opportunity for drug repurposing by using cyclosporin A to treat MPNs.The activated JAK2/STAT pathway is characteristic of myeloproliferative neoplasms (MPNs). Pleckstrin-2 (PLEK2) signalosome is downstream of the JAK2/STAT5 pathway and plays an important role in MPN development. The detailed molecular composition of this signalosome is unclear. Here, we revealed peptidylprolyl isomerase-like 2 (PPIL2) as a critical component of the complex in regulating human and murine erythropoiesis. PPIL2 was a direct target of STAT5 and was upregulated in MPN patients and a Jak2V617F MPN mouse model. Mechanistically, PPIL2 interacted with and catalyzed p53 polyubiquitination and proteasome-mediated degradation to promote cell growth. Ppil2 deficiency, or inhibition by cyclosporin A, led to a marked upregulation of p53 in vivo and ameliorated myeloproliferative phenotypes in Jak2V617F mice. Cyclosporin A also markedly reduced JAK2 mutated erythroid and myeloid proliferation in an induced pluripotent stem cell-derived human bone marrow organoid model. Our findings revealed PPIL2 as a critical component of the PLEK2 signalosome in driving MPN pathogenesis through negatively regulating p53, thus providing a target and an opportunity for drug repurposing by using cyclosporin A to treat MPNs.