Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
416 result(s) for "Richman, Douglas"
Sort by:
Highly Precise Measurement of HIV DNA by Droplet Digital PCR
Deoxyribonucleic acid (DNA) of the human immunodeficiency virus (HIV) provides the most sensitive measurement of residual infection in patients on effective combination antiretroviral therapy (cART). Droplet digital PCR (ddPCR) has recently been shown to provide highly accurate quantification of DNA copy number, but its application to quantification of HIV DNA, or other equally rare targets, has not been reported. This paper demonstrates and analyzes the application of ddPCR to measure the frequency of total HIV DNA (pol copies per million cells), and episomal 2-LTR (long terminal repeat) circles in cells isolated from infected patients. Analysis of over 300 clinical samples, including over 150 clinical samples assayed in triplicate by ddPCR and by real-time PCR (qPCR), demonstrates a significant increase in precision, with an average 5-fold decrease in the coefficient of variation of pol copy numbers and a >20-fold accuracy improvement for 2-LTR circles. Additional benefits of the ddPCR assay over qPCR include absolute quantification without reliance on an external standard and relative insensitivity to mismatches in primer and probe sequences. These features make digital PCR an attractive alternative for measurement of HIV DNA in clinical specimens. The improved sensitivity and precision of measurement of these rare events should facilitate measurements to characterize the latent HIV reservoir and interventions to eradicate it.
Measuring the latent reservoir in vivo
Current efforts toward achieving a cure for HIV are focused on developing strategies to eliminate latently infected CD4+ T cells, which represent the major barrier to virus eradication. Sensitive, precise, and practical assays that can reliably characterize and measure this HIV reservoir and can reliably measure the impact of a candidate treatment strategy are essential. PCR-based procedures for detecting integrated HIV DNA will overestimate the size of the reservoir by detecting replication-incompetent proviruses; however, viral outgrowth assays underestimate the size of the reservoir. Here, we describe the attributes and limitations of current procedures for measuring the HIV reservoir. Characterizing their relative merits will require rigorous evaluation of their performance characteristics (sensitivity, specificity, reproducibility, etc.) and their relationship to the results of clinical studies.
HIV persistence in tissue macrophages of humanized myeloid-only mice during antiretroviral therapy
Persistence of HIV is attributed primarily to latent infection of CD4 + T cells. Honeycutt et al . report that in humanized mice lacking T cells HIV can rebound from myeloid cells after antiretroviral treatment interruption, suggesting that persistence of HIV could involve other cell types. Despite years of fully suppressive antiretroviral therapy (ART), HIV persists in its hosts and is never eradicated. One major barrier to eradication is that the virus infects multiple cell types that may individually contribute to HIV persistence. Tissue macrophages are critical contributors to HIV pathogenesis 1 , 2 , 3 ; however, their specific role in HIV persistence during long-term suppressive ART has not been established 4 , 5 , 6 . Using humanized myeloid-only mice (MoM), we demonstrate that HIV infection of tissue macrophages is rapidly suppressed by ART, as reflected by a rapid drop in plasma viral load and a dramatic decrease in the levels of cell-associated viral RNA and DNA. No viral rebound was observed in the plasma of 67% of the ART-treated animals at 7 weeks after ART interruption, and no replication-competent virus was rescued from the tissue macrophages obtained from these animals. In contrast, in a subset of animals (∼33%), a delayed viral rebound was observed that is consistent with the establishment of persistent infection in tissue macrophages. These observations represent the first direct evidence, to our knowledge, of HIV persistence in tissue macrophages in vivo .
Barriers to a cure for HIV: new ways to target and eradicate HIV-1 reservoirs
Antiretroviral therapy for HIV infection needs lifelong access and strict adherence to regimens that are both expensive and associated with toxic effects. A curative intervention will be needed to fully stop the epidemic. The failure to eradicate HIV infection during long-term antiretroviral therapy shows the intrinsic stability of the viral genome in latently infected CD4T cells and other cells, and possibly a sustained low-level viral replication. Heterogeneity in latently infected cell populations and homoeostatic proliferation of infected cells might affect the dynamics of virus production and persistence. Despite potent antiretroviral therapy, chronic immune activation, inflammation, and immune dysfunction persist, and are likely to have important effects on the size and distribution of the viral reservoir. The inability of the immune system to recognise cells harbouring latent virus and to eliminate cells actively producing virus is the biggest challenge to finding a cure. We look at new approaches to unravelling the complex virus–host interactions that lead to persistent infection and latency, and discuss the rationale for combination of novel treatment strategies with available antiretroviral treatment options to cure HIV.
Comparative Analysis of Measures of Viral Reservoirs in HIV-1 Eradication Studies
HIV-1 reservoirs preclude virus eradication in patients receiving highly active antiretroviral therapy (HAART). The best characterized reservoir is a small, difficult-to-quantify pool of resting memory CD4(+) T cells carrying latent but replication-competent viral genomes. Because strategies targeting this latent reservoir are now being tested in clinical trials, well-validated high-throughput assays that quantify this reservoir are urgently needed. Here we compare eleven different approaches for quantitating persistent HIV-1 in 30 patients on HAART, using the original viral outgrowth assay for resting CD4(+) T cells carrying inducible, replication-competent viral genomes as a standard for comparison. PCR-based assays for cells containing HIV-1 DNA gave infected cell frequencies at least 2 logs higher than the viral outgrowth assay, even in subjects who started HAART during acute/early infection. This difference may reflect defective viral genomes. The ratio of infected cell frequencies determined by viral outgrowth and PCR-based assays varied dramatically between patients. Although strong correlations with the viral outgrowth assay could not be formally excluded for most assays, correlations achieved statistical significance only for integrated HIV-1 DNA in peripheral blood mononuclear cells and HIV-1 RNA/DNA ratio in rectal CD4(+) T cells. Residual viremia was below the limit of detection in many subjects and did not correlate with the viral outgrowth assays. The dramatic differences in infected cell frequencies and the lack of a precise correlation between culture and PCR-based assays raise the possibility that the successful clearance of latently infected cells may be masked by a larger and variable pool of cells with defective proviruses. These defective proviruses are detected by PCR but may not be affected by reactivation strategies and may not require eradication to accomplish an effective cure. A molecular understanding of the discrepancy between infected cell frequencies measured by viral outgrowth versus PCR assays is an urgent priority in HIV-1 cure research.
Antiviral Drug Discovery To Address the COVID-19 Pandemic
The magnitude of the morbidity and mortality inflicted upon the global population in less than 1 year has driven the inescapable conclusion that the discovery and development of effective antiviral drugs for COVID-19 are urgent and should be prioritized. The antiviral drug discovery programs that emerged for HIV and hepatitis C virus have enabled technology and expertise to accelerate this process for SARS-CoV-2. The description of candidate lead inhibitors for the viral main protease (M pro ) exemplifies this accelerated approach and reminds us of the needs and opportunities for addressing this pandemic. The magnitude of the morbidity and mortality inflicted upon the global population in less than 1 year has driven the inescapable conclusion that the discovery and development of effective antiviral drugs for COVID-19 are urgent and should be prioritized. The antiviral drug discovery programs that emerged for HIV and hepatitis C virus have enabled technology and expertise to accelerate this process for SARS-CoV-2. The description of candidate lead inhibitors for the viral main protease (M pro ) exemplifies this accelerated approach and reminds us of the needs and opportunities for addressing this pandemic.
Virological suppression and clinical management in response to viremia in South African HIV treatment program: A multicenter cohort study
Uptake of antiretroviral treatment (ART) is expanding rapidly in low- and middle-income countries (LMIC). Monitoring of virological suppression is recommended at 6 months of treatment and annually thereafter. In case of confirmed virological failure, a switch to second-line ART is indicated. There is a paucity of data on virological suppression and clinical management of patients experiencing viremia in clinical practice in LMIC. We report a large-scale multicenter assessment of virological suppression over time and management of viremia under programmatic conditions. Linked medical record and laboratory source data from adult patients on first-line ART at 52 South African centers between 1 January 2007 and 1 May 2018 were studied. Virological suppression, switch to second-line ART, death, and loss to follow-up were analyzed. Multistate models and Cox proportional hazard models were used to assess suppression over time and predictors of treatment outcomes. A total of 104,719 patients were included. Patients were predominantly female (67.6%). Median age was 35.7 years (interquartile range [IQR]: 29.9-43.0). In on-treatment analysis, suppression below 1,000 copies/mL was 89.0% at month 12 and 90.4% at month 72. Suppression below 50 copies/mL was 73.1% at month 12 and 77.5% at month 72. Intention-to-treat suppression was 75.0% and 64.3% below 1,000 and 50 copies/mL at month 72, respectively. Viremia occurred in 19.8% (20,766/104,719) of patients during a median follow-up of 152 (IQR: 61-265) weeks. Being male and below 35 years of age and having a CD4 count below 200 cells/μL prior to start of ART were risk factors for viremia. After detection of viremia, confirmatory testing took 29 weeks (IQR: 16-54). Viral resuppression to below 1,000 copies/mL without switch of ART occurred frequently (45.6%; 6,030/13,210) but was associated with renewed viral rebound and switch. Of patients with confirmed failure who remained in care, only 41.5% (1,872/4,510) were switched. The median time to switch was 68 weeks (IQR: 35-127), resulting in 12,325 person-years spent with a viral load above 1,000 copies/mL. Limitations of this study include potential missing data, which is in part addressed by the use of cross-matched laboratory source data, and the possibility of unmeasured confounding. In this study, 90% virological suppression below the threshold of 1,000 copies/mL was observed in on-treatment analysis. However, this target was not met at the 50-copies/mL threshold or in intention-to-treat analysis. Clinical management in response to viremia was profoundly delayed, prolonging the duration of viremia and potential for transmission. Diagnostic tools to establish the cause of viremia are urgently needed to accelerate clinical decision-making.
Challenge of Finding a Cure for HIV Infection
Although combination therapy for HIV infection represents a triumph for modern medicine, chronic suppressive therapy is required to contain persistent infection in reservoirs such as latently infected CD4⁺ lymphocytes and cells of the macrophage-monocyte lineage. Despite its success, chronic suppressive therapy is limited by its cost, the requirement of lifelong adherence, and the unknown effects of long-term treatment. This review discusses our current understanding of suppressive antiretroviral therapy, the latent viral reservoir, and the needs for and challenges of attacking this reservoir to achieve a cure.
A case report of disseminated histoplasmosis and concurrent cryptococcal meningitis in a patient treated with ruxolitinib
Background Ruxolitinib is a highly potent janus kinase inhibitor that places its users at risk for various bacterial infections and viral reactivation. However new reports are also emerging that suggest greater immunosuppression and risk for fungal disease. Case presentation We report the case of a 51 year-old veteran from Guam, treated with ruxolitinib for polycythemia vera, who developed disseminated histoplasmosis and concurrent cryptococcal meningitis. Conclusion This case draws attention to the degree of immunosuppression that may be seen with this drug and the need for heightened vigilance for opportunistic infections in those treated with inhibitors of janus kinase/signal transducers and activators of transcription (JAK/STAT) such as ruxolitinib.
Human Immunodeficiency Virus Drug Resistance
Testing for human immunodeficiency virus resistance in drug-naive individuals and in patients in whom antiretroviral treatment (ART) is failing, and the appreciation of the role of testing, are crucial to the prevention and management of failure of ART. Abstract Background Contemporary antiretroviral therapies (ART) and management strategies have diminished both human immunodeficiency virus (HIV) treatment failure and the acquired resistance to drugs in resource-rich regions, but transmission of drug-resistant viruses has not similarly decreased. In low- and middle-income regions, ART roll-out has improved outcomes, but has resulted in increasing acquired and transmitted resistances. Our objective was to review resistance to ART drugs and methods to detect it, and to provide updated recommendations for testing and monitoring for drug resistance in HIV-infected individuals. Methods A volunteer panel of experts appointed by the International Antiviral (formerly AIDS) Society-USA reviewed relevant peer-reviewed data that were published or presented at scientific conferences. Recommendations were rated according to the strength of the recommendation and quality of the evidence, and reached by full panel consensus. Results Resistance testing remains a cornerstone of ART. It is recommended in newly-diagnosed individuals and in patients in whom ART has failed. Testing for transmitted integrase strand-transfer inhibitor resistance is currently not recommended, but this may change as more resistance emerges with widespread use. Sanger-based and next-generation sequencing approaches are each suited for genotypic testing. Testing for minority variants harboring drug resistance may only be considered if treatments depend on a first-generation nonnucleoside analogue reverse transcriptase inhibitor. Different HIV-1 subtypes do not need special considerations regarding resistance testing. Conclusions Testing for HIV drug resistance in drug-naive individuals and in patients in whom antiretroviral drugs are failing, and the appreciation of the role of testing, are crucial to the prevention and management of failure of ART.