Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
9 result(s) for "Riddell, Kay P."
Sort by:
Evaluation of reproductive protection against bovine viral diarrhea virus and bovine herpesvirus-1 afforded by annual revaccination with modified-live viral or combination modified-live/killed viral vaccines after primary vaccination with modified-live viral vaccine
The objective of this study was to compare reproductive protection in cattle against bovine viral diarrhea virus (BVDV) and bovine herpesvirus 1 (BoHV-1) provided by annual revaccination with multivalent modified-live viral (MLV) vaccine or multivalent combination viral (CV) vaccine containing temperature-sensitive modified-live BoHV-1 and killed BVDV when MLV vaccines were given pre-breeding to nulliparous heifers. Seventy-five beef heifers were allocated into treatment groups A (n=30; two MLV doses pre-breeding, annual revaccination with MLV vaccine), B (n=30; two MLV doses pre-breeding, annual revaccination with CV vaccine) and C (n=15; saline in lieu of vaccine). Heifers were administered treatments on days 0 (weaning), 183 (pre-breeding), 366 (first gestation), and 738 (second gestation). After first calving, primiparous cows were bred, with pregnancy assessment on day 715. At that time, 24 group A heifers (23 pregnancies), 23 group B heifers (22 pregnancies), and 15 group C heifers (15 pregnancies) were commingled with six persistently infected (PI) cattle for 16days. Ninety-nine days after PI removal, cows were intravenously inoculated with BoHV-1. All fetuses and live offspring were assessed for BVDV and BoHV-1. Abortions occurred in 3/23 group A cows, 1/22 group B cows, and 11/15 group C cows. Fetal infection with BVDV or BoHV-1 occurred in 4/23 group A offspring, 0/22 group B offspring, and 15/15 group C offspring. This research demonstrates efficacy of administering two pre-breeding doses of MLV vaccine with annual revaccination using CV vaccine to prevent fetal loss due to exposure to BVDV and BoHV-1.
Comparison of reproductive protection against bovine viral diarrhea virus provided by multivalent viral vaccines containing inactivated fractions of bovine viral diarrhea virus 1 and 2
Bovine viral diarrhea virus (BVDV) is an important viral cause of reproductive disease, immune suppression and clinical disease in cattle. The objective of this study was to compare reproductive protection in cattle against the impacts of bovine viral diarrhea virus (BVDV) provided by three different multivalent vaccines containing inactivated BVDV. BVDV negative beef heifers and cows (n = 122) were randomly assigned to one of four groups. Groups A-C (n = 34/group) received two pre-breeding doses of one of three commercially available multivalent vaccines containing inactivated fractions of BVDV 1 and BVDV 2, and Group D (n = 20) served as negative control and received two doses of saline prior to breeding. Animals were bred, and following pregnancy diagnosis, 110 cattle [Group A (n = 31); Group B (n = 32); Group C (n = 31); Group D (n = 16)] were subjected to a 28-day exposure to cattle persistently infected (PI) with BVDV (1a, 1b and 2a). Of the 110 pregnancies, 6 pregnancies resulted in fetal resorption with no material for testing. From the resultant 104 pregnancies, BVDV transplacental infections were demonstrated in 73 pregnancies. The BVDV fetal infection rate (FI) was calculated at 13/30 (43%) for Group A cows, 27/29 (93%) for Group B cows, 18/30 (60%) for Group C cows, and 15/15 (100%) for Group D cows. Statistical differences were observed between groups with respect to post-vaccination antibody titers, presence and duration of viremia in pregnant cattle, and fetal infection rates in offspring from BVDV-exposed cows. Group A vaccination resulted in significant protection against BVDV infection as compared to all other groups based upon outcome measurements, while Group B vaccination did not differ in protection against BVDV infection from control Group D. Ability of inactivated BVDV vaccines to provide protection against BVDV fetal infection varies significantly among commercially available products; however, in this challenge model, the inactivated vaccines provided unacceptable levels of BVDV FI protection.
Efficacy of multivalent, modified- live virus (MLV) vaccines administered to early weaned beef calves subsequently challenged with virulent Bovine viral diarrhea virus type 2
BACKGROUND: Vaccination of young calves against Bovine viral diarrhea virus (BVDV) is desirable in dairy and beef operations to reduce clinical disease and prevent spread of the virus among cattle. Although protection from clinical disease by multivalent, modified-live virus (MLV) vaccines has been demonstrated, the ability of MLV vaccines to prevent viremia and viral shedding in young calves possessing passive immunity is not known. The purpose of this study was to compare the ability of three different MLV vaccines to prevent clinical disease, viremia, and virus shedding in early weaned beef calves possessing maternal immunity that were vaccinated once at 45 days prior to challenge with virulent BVDV 2. RESULTS: At 45 days following vaccination, calves that received vaccines B and C had significantly higher BVDV 1 and BVDV 2 serum antibody titers compared with control calves. Serum antibody titers for BVDV 1 and BVDV 2 were not significantly different between control calves and calves that received vaccine D. Following BVDV 2 challenge, a higher proportion of control calves and calves that received vaccine D presented viremia and shed virus compared with calves that received vaccines B and C. Rectal temperatures and clinical scores were not significantly different between groups at any time period. Calves that received vaccines B and C had significantly higher mean body weights at BVDV 2 challenge and at the end of the study compared with control calves. CONCLUSIONS: Moderate to low maternally-derived BVDV antibody levels protected all calves against severe clinical disease after challenge with virulent BVDV 2. Vaccines B and C induced a greater antibody response to BVDV 1 and BVDV 2, and resulted in reduced viremia and virus shedding in vaccinated calves after challenge indicating a greater efficacy in preventing virus transmission and reducing negative effects of viremia.
Antiviral Treatment of Calves Persistently Infected with Bovine Viral Diarrhoea Virus
Background: Animals persistently infected (PI) with bovine viral diarrhoea virus (BVDV) are a key source of viral propagation within and among herds. Currently, no specific therapy exists to treat PI animals. The purpose of this research was to initiate evaluation of the pharmacokinetic and safety data of a novel antiviral agent in BVDV-free calves and to assess the antiviral efficacy of the same agent in PI calves. Methods: One BVDV-free calf was treated with 2-(2-benzimidazolyl)-5-[4-(2-imidazolino)phenyl]furan dihydrochloride (DB772) once at a dose of 1.6 mg/kg intravenously and one BVDV-free calf was treated three times a day for 6 days at 9.5 mg/kg intravenously. Subsequently, four PI calves were treated intravenously with 12 mg/kg DB772 three times a day for 6 days and two PI control calves were treated with an equivalent volume of diluent only. Results: Prior to antiviral treatment, the virus isolated from each calf was susceptible to DB772 in vitro. The antiviral treatment effectively inhibited virus for 14 days in one calf and at least 3 days in three calves. Subsequent virus isolated from the three calves was resistant to DB772 in vitro. No adverse effects of DB772 administration were detected. Conclusions: Results demonstrate that DB772 administration is safe and exhibits antiviral properties in PI calves while facilitating the rapid development of viral resistance to this novel therapeutic agent.
Noncytopathic bovine viral diarrhea virus can persist in testicular tissue after vaccination of peri-pubertal bulls but prevents subsequent infection
The objectives of this research were to evaluate the risk of prolonged testicular infection as a consequence of vaccination of peri-pubertal bulls with a modified-live, noncytopathic strain of BVDV and to assess vaccine efficacy in preventing prolonged testicular infections after a subsequent acute infection. Seronegative, peri-pubertal bulls were vaccinated subcutaneously with an approximate minimum immunizing dose or a 10× standard dose of modified-live, noncytopathic BVDV or were maintained as unvaccinated controls. Forty-nine days after vaccination, all bulls were intranasally inoculated with a noncytopathic field strain of BVDV. Semen and testicular biopsies collected after vaccination and challenge were assayed for BVDV using virus isolation, reverse transcription-nested PCR, or immunohistochemistry and the identity of viral strains was determined by nucleotide sequencing of PCR products. The vaccine strain of BVDV was detected in testicular tissue of vaccinated bulls as long as 134 days after immunization. Prolonged testicular infections with the challenge strain were detected only in unvaccinated bulls as long as 85 days after challenge. Whereas vaccination caused prolonged testicular infection in some bulls, it did prevent subsequent infection of testicular tissue with the challenge strain. This research demonstrates that subcutaneous vaccination of naïve, peri-pubertal bulls with a noncytopathic, modified-live strain of BVDV can result in prolonged viral replication within testicular tissue. The risk for these prolonged testicular infections to cause venereal transmission of BVDV or subfertility is likely to be low but requires further investigation.
Comparison of 2 synchronization protocols in conjunction with delayed insemination in non-responders using sexed semen in beef heifers
The objective of this study was to compare estrus synchronization and fixed-timed artificial insemination (FTAI) protocols in commercial beef heifers to be bred with sexed semen. Secondly, the trial evaluated the benefit of delaying insemination for 24 hours in heifers not demonstrating estrous activity following synchronization and prior to FTAI.
Long-Term Safety and Efficacy of Factor IX Gene Therapy in Hemophilia B
In this long-term follow-up study, men with hemophilia B had steady production of functional factor IX after gene transfer with an adeno-associated viral vector. Patients had a marked reduction in bleeding episodes and factor IX replacement with minimal toxicity. Hemophilia B, an X-linked recessive bleeding disorder, results from a defect in the gene encoding coagulation factor IX, a serine protease that is critical for blood clotting. Patients with functional plasma levels of factor IX that are less than 1% of the normal value (1 IU per deciliter) have a severe phenotype characterized by frequent spontaneous bleeding episodes that result in chronic, debilitating arthropathy and occasionally death. 1 Current treatment to prevent these bleeding episodes entails lifelong intravenous injections of factor IX every 2 or 3 days. Although this treatment is effective in preventing spontaneous bleeding episodes, it is not curative . . .
An ethanol inducible gene switch for plants used to manipulate carbon metabolism
Many transgenic plant studies use constitutive promoters to express transgenes. For certain genes, deleterious effects arise from constant expression in all tissues throughout development. We describe a chemically inducible plant gene expression system, with negligible background activity, that obviates this problem. We demonstrate its potential by showing inducible manipulation of carbon metabolism in transgenic plants. Upon rapid induction of yeast cytosolic invertase, a marked phenotype appears in developing leaves that is absent from leaves that developed before induction or after it has ceased.