Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
135 result(s) for "Sandstrom, Richard"
Sort by:
Global reference mapping of human transcription factor footprints
Combinatorial binding of transcription factors to regulatory DNA underpins gene regulation in all organisms. Genetic variation in regulatory regions has been connected with diseases and diverse phenotypic traits 1 , but it remains challenging to distinguish variants that affect regulatory function 2 . Genomic DNase I footprinting enables the quantitative, nucleotide-resolution delineation of sites of transcription factor occupancy within native chromatin 3 – 6 . However, only a small fraction of such sites have been precisely resolved on the human genome sequence 6 . Here, to enable comprehensive mapping of transcription factor footprints, we produced high-density DNase I cleavage maps from 243 human cell and tissue types and states and integrated these data to delineate about 4.5 million compact genomic elements that encode transcription factor occupancy at nucleotide resolution. We map the fine-scale structure within about 1.6 million DNase I-hypersensitive sites and show that the overwhelming majority are populated by well-spaced sites of single transcription factor–DNA interaction. Cell-context-dependent cis -regulation is chiefly executed by wholesale modulation of accessibility at regulatory DNA rather than by differential transcription factor occupancy within accessible elements. We also show that the enrichment of genetic variants associated with diseases or phenotypic traits in regulatory regions 1 , 7 is almost entirely attributable to variants within footprints, and that functional variants that affect transcription factor occupancy are nearly evenly partitioned between loss- and gain-of-function alleles. Unexpectedly, we find increased density of human genetic variation within transcription factor footprints, revealing an unappreciated driver of cis -regulatory evolution. Our results provide a framework for both global and nucleotide-precision analyses of gene regulatory mechanisms and functional genetic variation. A high-density DNase I cleavage map from 243 human cell and tissue types provides a genome-wide, nucleotide-resolution map of human transcription factor footprints.
Index and biological spectrum of human DNase I hypersensitive sites
DNase I hypersensitive sites (DHSs) are generic markers of regulatory DNA 1 – 5 and contain genetic variations associated with diseases and phenotypic traits 6 – 8 . We created high-resolution maps of DHSs from 733 human biosamples encompassing 438 cell and tissue types and states, and integrated these to delineate and numerically index approximately 3.6 million DHSs within the human genome sequence, providing a common coordinate system for regulatory DNA. Here we show that these maps highly resolve the cis -regulatory compartment of the human genome, which encodes unexpectedly diverse cell- and tissue-selective regulatory programs at very high density. These programs can be captured comprehensively by a simple vocabulary that enables the assignment to each DHS of a regulatory barcode that encapsulates its tissue manifestations, and global annotation of protein-coding and non-coding RNA genes in a manner orthogonal to gene expression. Finally, we show that sharply resolved DHSs markedly enhance the genetic association and heritability signals of diseases and traits. Rather than being confined to a small number of distal elements or promoters, we find that genetic signals converge on congruently regulated sets of DHSs that decorate entire gene bodies. Together, our results create a universal, extensible coordinate system and vocabulary for human regulatory DNA marked by DHSs, and provide a new global perspective on the architecture of human gene regulation. High-resolution maps of DNase I hypersensitive sites from 733 human biosamples are used to identify and index regulatory DNA within the human genome.
Cell-of-origin chromatin organization shapes the mutational landscape of cancer
An analysis of cell-type-specific epigenomic features reveals a relationship between epigenomic and mutational profiles; chromatin characteristics can explain a large proportion of mutational variance in cancer genomes and the mutational distribution can identify the probable cell type from which a given cancer originated from. Chromatin organization in cancerous cells Genomic studies have shown that different cancer types vary substantially in the local density and types of somatic mutations. This has been explained not only by differences in DNA sequence but also by other features including epigenetic organization. Shamil Sunyaev and colleague now compare mutation densities to detailed epigenetic profiles of different cell types and tissues. They demonstrate that epigenomic features of a given cell type or tissue in which a cancer arises are much stronger determinants of mutational profiles than other properties. Conversely, the findings make it possible to deduce information on the possible tissue-of-origin of a tumour based on its mutational landscape. Cancer is a disease potentiated by mutations in somatic cells. Cancer mutations are not distributed uniformly along the human genome. Instead, different human genomic regions vary by up to fivefold in the local density of cancer somatic mutations 1 , posing a fundamental problem for statistical methods used in cancer genomics. Epigenomic organization has been proposed as a major determinant of the cancer mutational landscape 1 , 2 , 3 , 4 , 5 . However, both somatic mutagenesis and epigenomic features are highly cell-type-specific 6 , 7 . We investigated the distribution of mutations in multiple independent samples of diverse cancer types and compared them to cell-type-specific epigenomic features. Here we show that chromatin accessibility and modification, together with replication timing, explain up to 86% of the variance in mutation rates along cancer genomes. The best predictors of local somatic mutation density are epigenomic features derived from the most likely cell type of origin of the corresponding malignancy. Moreover, we find that cell-of-origin chromatin features are much stronger determinants of cancer mutation profiles than chromatin features of matched cancer cell lines. Furthermore, we show that the cell type of origin of a cancer can be accurately determined based on the distribution of mutations along its genome. Thus, the DNA sequence of a cancer genome encompasses a wealth of information about the identity and epigenomic features of its cell of origin.
Resolving the complexity of the human genome using single-molecule sequencing
Single-molecule, real-time DNA sequencing is used to analyse a haploid human genome (CHM1), thus closing or extending more than half of the remaining 164 euchromatic gaps in the human genome; the complete sequences of euchromatic structural variants (including inversions, complex insertions and tandem repeats) are resolved at the base-pair level, suggesting that a greater complexity of the human genome can now be accessed. Deep-sequencing the human genome The human genome is considered sequenced, yet more than 160 euchromatic gaps remain and many aspects of its structural variation are poorly understood. Evan Eichler and colleagues sequenced and analysed a haploid human genome (CHM1) using single-molecule, real-time (SMRT) DNA sequencing and by doing so closed — or in some cases extended — more than half of the remaining gaps. They also resolved the complete sequence of numerous euchromatic structural variants at the base-pair level, revealing inversions, complex insertions and long tracts of tandem repeats, some of them previously unknown. Thanks to the longer-read sequencing technology applied here, the complexity of the human genome that stems from variation of longer and more complex repetitive DNA can now be largely resolved. The human genome is arguably the most complete mammalian reference assembly 1 , 2 , 3 , yet more than 160 euchromatic gaps remain 4 , 5 , 6 and aspects of its structural variation remain poorly understood ten years after its completion 7 , 8 , 9 . To identify missing sequence and genetic variation, here we sequence and analyse a haploid human genome (CHM1) using single-molecule, real-time DNA sequencing 10 . We close or extend 55% of the remaining interstitial gaps in the human GRCh37 reference genome—78% of which carried long runs of degenerate short tandem repeats, often several kilobases in length, embedded within (G+C)-rich genomic regions. We resolve the complete sequence of 26,079 euchromatic structural variants at the base-pair level, including inversions, complex insertions and long tracts of tandem repeats. Most have not been previously reported, with the greatest increases in sensitivity occurring for events less than 5 kilobases in size. Compared to the human reference, we find a significant insertional bias (3:1) in regions corresponding to complex insertions and long short tandem repeats. Our results suggest a greater complexity of the human genome in the form of variation of longer and more complex repetitive DNA that can now be largely resolved with the application of this longer-read sequencing technology.
Systematic Localization of Common Disease-Associated Variation in Regulatory DNA
Genome-wide association studies have identified many noncoding variants associated with common diseases and traits. We show that these variants are concentrated in regulatory DNA marked by deoxyribonuclease I (DNase I) hypersensitive sites (DHSs). Eighty-eight percent of such DHSs are active during fetal development and are enriched in variants associated with gestational exposure—related phenotypes. We identified distant gene targets for hundreds of variant-containing DHSs that may explain phenotype associations. Disease-associated variants systematically perturb transcription factor recognition sequences, frequently alter allelic chromatin states, and form regulatory networks. We also demonstrated tissue-selective enrichment of more weakly disease-associated variants within DHSs and the de novo identification of pathogenic cell types for Crohn's disease, multiple sclerosis, and an electrocardiogram trait, without prior knowledge of physiological mechanisms. Our results suggest pervasive involvement of regulatory DNA variation in common human disease and provide pathogenic insights into diverse disorders.
An expansive human regulatory lexicon encoded in transcription factor footprints
Regulatory factor binding to genomic DNA protects the underlying sequence from cleavage by DNase I, leaving nucleotide-resolution footprints. Using genomic DNase I footprinting across 41 diverse cell and tissue types, we detected 45 million transcription factor occupancy events within regulatory regions, representing differential binding to 8.4 million distinct short sequence elements. Here we show that this small genomic sequence compartment, roughly twice the size of the exome, encodes an expansive repertoire of conserved recognition sequences for DNA-binding proteins that nearly doubles the size of the human cis –regulatory lexicon. We find that genetic variants affecting allelic chromatin states are concentrated in footprints, and that these elements are preferentially sheltered from DNA methylation. High-resolution DNase I cleavage patterns mirror nucleotide-level evolutionary conservation and track the crystallographic topography of protein–DNA interfaces, indicating that transcription factor structure has been evolutionarily imprinted on the human genome sequence. We identify a stereotyped 50-base-pair footprint that precisely defines the site of transcript origination within thousands of human promoters. Finally, we describe a large collection of novel regulatory factor recognition motifs that are highly conserved in both sequence and function, and exhibit cell-selective occupancy patterns that closely parallel major regulators of development, differentiation and pluripotency. DNase I footprinting in 41 cell and tissue types reveals millions of short sequence elements encoding an expansive repertoire of conserved recognition sequences for DNA-binding proteins. ENCODE: transcription-factor footprints DNaseI footprinting detects DNA sequences that are protected from cleavage by DNaseI because they are bound by regulatory factors. Studying these footprints in 41 diverse cell and tissue types, the authors describe millions of short sequence elements that are conserved recognition sequences for DNA-binding proteins. The effort nearly doubles the size of the human cis -regulatory lexicon and provides insight into chromatin states and levels of evolutionary conservation. A large collection of novel regulatory-factor recognition motifs that closely parallel major regulators of development, differentiation and pluripotency is also described.
Sequencing newly replicated DNA reveals widespread plasticity in human replication timing
Faithful transmission of genetic material to daughter cells involves a characteristic temporal order of DNA replication, which may play a significant role in the inheritance of epigenetic states. We developed a genome-scale approach--Repli Seq--to map temporally ordered replicating DNA using massively parallel sequencing and applied it to study regional variation in human DNA replication time across multiple human cell types. The method requires as few as 8,000 cytometry-fractionated cells for a single analysis, and provides high-resolution DNA replication patterns with respect to both cell-cycle time and genomic position. We find that different cell types exhibit characteristic replication signatures that reveal striking plasticity in regional replication time patterns covering at least 50% of the human genome. We also identified autosomal regions with marked biphasic replication timing that include known regions of monoallelic expression as well as many previously uncharacterized domains. Comparison with high-resolution genome-wide profiles of DNaseI sensitivity revealed that DNA replication typically initiates within foci of accessible chromatin comprising clustered DNaseI hypersensitive sites, and that replication time is better correlated with chromatin accessibility than with gene expression. The data collectively provide a unique, genome-wide picture of the epigenetic compartmentalization of the human genome and suggest that cell-lineage specification involves extensive reprogramming of replication timing patterns.
Comprehensive analysis of the chromatin landscape in Drosophila melanogaster
Chromatin is composed of DNA and a variety of modified histones and non-histone proteins, which have an impact on cell differentiation, gene regulation and other key cellular processes. Here we present a genome-wide chromatin landscape for Drosophila melanogaster based on eighteen histone modifications, summarized by nine prevalent combinatorial patterns. Integrative analysis with other data (non-histone chromatin proteins, DNase I hypersensitivity, GRO-Seq reads produced by engaged polymerase, short/long RNA products) reveals discrete characteristics of chromosomes, genes, regulatory elements and other functional domains. We find that active genes display distinct chromatin signatures that are correlated with disparate gene lengths, exon patterns, regulatory functions and genomic contexts. We also demonstrate a diversity of signatures among Polycomb targets that include a subset with paused polymerase. This systematic profiling and integrative analysis of chromatin signatures provides insights into how genomic elements are regulated, and will serve as a resource for future experimental investigations of genome structure and function. Elements of gene function Three papers in this issue of Nature report on the modENCODE initiative, which aims to characterize functional DNA elements in the fruitfly Drosophila melanogaster and the roundworm Caenorhabditis elegans . Kharchenko et al . present a genome-wide chromatin landscape of the fruitfly, based on 18 histone modifications. They describe nine prevalent chromatin states. Integrating these analyses with other data types reveals individual characteristics of different genomic elements. Graveley et al . have used RNA-Seq, tiling microarrays and cDNA sequencing to explore the transcriptome in 30 distinct developmental stages of the fruitfly. Among the results are scores of new genes, coding and non-coding transcripts, as well as splicing and editing events. Finally, Nègre et al . have produced a map of the regulatory part of the fruitfly genome, defining a vast array of putative regulatory elements, such as enhancers, promoters, insulators and silencers. As part of the modENCODE initiative, which aims to characterize functional DNA elements in D. melanogaster and C. elegans , this study presents a genome-wide chromatin landscape of the fruitfly, based on 18 histone modifications. Nine prevalent chromatin states are described. Integrating these analyses with other data types reveals individual characteristics of different genomic elements. The work provides a resource of unprecedented scale for future experimental investigations.
Conservation of trans-acting circuitry during mammalian regulatory evolution
The basic body plan and major physiological axes have been highly conserved during mammalian evolution, yet only a small fraction of the human genome sequence appears to be subject to evolutionary constraint. To quantify cis- versus trans-acting contributions to mammalian regulatory evolution, we performed genomic DNase I footprinting of the mouse genome across 25 cell and tissue types, collectively defining ∼8.6 million transcription factor (TF) occupancy sites at nucleotide resolution. Here we show that mouse TF footprints conjointly encode a regulatory lexicon that is ∼95% similar with that derived from human TF footprints. However, only ∼20% of mouse TF footprints have human orthologues. Despite substantial turnover of the cis-regulatory landscape, nearly half of all pairwise regulatory interactions connecting mouse TF genes have been maintained in orthologous human cell types through evolutionary innovation of TF recognition sequences. Furthermore, the higher-level organization of mouse TF-to-TF connections into cellular network architectures is nearly identical with human. Our results indicate that evolutionary selection on mammalian gene regulation is targeted chiefly at the level of trans-regulatory circuitry, enabling and potentiating cis-regulatory plasticity. Mouse genomic footprinting reveals conservation of transcription factor (TF) recognition repertoires and trans-regulatory circuitry despite massive turnover of DNA elements that contact TFs in vivo. Trans-acting networks in the mouse epigenome Having generated genomic DNase I footprinting data of the mouse genome across 25 cell and tissue types, these authors use these data to quantify cis-versus-trans regulatory contributions to mammalian regulatory evolution. They describe more than 600 motifs that collectively are over 95% similar to that recognized in vivo by human transcription factors (TFs). Despite substantial turnover of the cis-regulatory landscape around each TF gene, nearly half of all pairwise regulatory interactions connecting mouse TF genes have been maintained in orthologous human cell types through evolutionary innovation of TF recognition sequences. Conservation between mouse and human TF regulatory networks is particularly similar at the highest organization level. The work was performed as part of the mouse ENCODE project.
Global mapping of protein-DNA interactions in vivo by digital genomic footprinting
Dense mapping of DNase I cleavage sites across the whole yeast genome by next-generation sequencing reveals a global view of the binding of regulatory proteins to genomic DNA. The high resolution allows the identification of new binding sites for known factors as well as the de novo derivation of factor binding motifs. The orchestrated binding of transcriptional activators and repressors to specific DNA sequences in the context of chromatin defines the regulatory program of eukaryotic genomes. We developed a digital approach to assay regulatory protein occupancy on genomic DNA in vivo by dense mapping of individual DNase I cleavages from intact nuclei using massively parallel DNA sequencing. Analysis of >23 million cleavages across the Saccharomyces cerevisiae genome revealed thousands of protected regulatory protein footprints, enabling de novo derivation of factor binding motifs and the identification of hundreds of new binding sites for major regulators. We observed striking correspondence between single-nucleotide resolution DNase I cleavage patterns and protein-DNA interactions determined by crystallography. The data also yielded a detailed view of larger chromatin features including positioned nucleosomes flanking factor binding regions. Digital genomic footprinting should be a powerful approach to delineate the cis -regulatory framework of any organism with an available genome sequence.