Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
10
result(s) for
"Scheifler, Mathilde"
Sort by:
Host-microbiota-parasite interactions in two wild sparid fish species, Diplodus annularis and Oblada melanura (Teleostei, Sparidae) over a year: a pilot study
by
Desdevises, Yves
,
Sanchez-Brosseau, Sophie
,
Magnanou, Elodie
in
Abiotic factor
,
Abiotic factors
,
Abundance
2023
Background
The microbiota in fish external mucus is mainly known for having a role in homeostasis and protection against pathogens, but recent evidence suggests it is also involved in the host-specificity of some ectoparasites. In this study, we investigated the influence of seasonality and environmental factors on both fish external microbiota and monogenean gill ectoparasites abundance and diversity and assessed the level of covariations between monogenean and bacterial communities across seasons. To do so, we assessed skin and gill microbiota of two sparid species,
Oblada melanura
and
Diplodus annularis
, over a year and collected their specific monogenean ectoparasites belonging to the
Lamellodiscus
genus.
Results
Our results revealed that diversity and structure of skin and gill mucus microbiota were strongly affected by seasonality, mainly by the variations of temperature, with specific fish-associated bacterial taxa for each season. The diversity and abundance of parasites were also influenced by seasonality, with the abundance of some
Lamellodiscus
species significantly correlated to temperature. Numerous positive and negative correlations between the abundance of given bacterial genera and
Lamellodiscus
species were observed throughout the year, suggesting their differential interaction across seasons.
Conclusions
The present study is one of the first to demonstrate the influence of seasonality and related abiotic factors on fish external microbiota over a year. We further identified potential interactions between gill microbiota and parasite occurrence in wild fish populations, improving current knowledge and understanding of the establishment of host-specificity.
Journal Article
A New Isolate Beauveria bassiana GxABT-1: Efficacy against Myzus persicae and Promising Impact on the Beet Mild Yellow Virus-Aphid Association
by
Dessauvages, Kenza
,
Ben Fekih, Ibtissem
,
Francis, Frédéric
in
aphid-borne virus
,
Aphididae
,
Ascomycota
2024
Within the context of ecofriendly alternatives to neonicotinoids, we explored the direct and endophytic potential of two Beauveria bassiana isolates, GHA from BotaniGard and the new endemic isolate GxABT-1, against the Sugar Beet Mild Yellow Virus (BMYV)-Myzus persicae pathosystem. A mortality rate of 96 and 91% was registered after 8 days of treatment with GHA and Gx-ABT-1, respectively. To assess the endophytic impact, sugar beet seeds were treated, and the ability of the fungi to colonize the plant was assessed and correlated with the aphids’ (1) life cycle, (2) attraction towards the plants, and (3) ability to transmit BMYV. Both fungi colonized the plants, and the GxABT-1 isolate impaired the aphids’ life cycle. Myzus persicae were more attracted to leaf discs from non-treated plants than to the fungal-treated ones. Interestingly, when the choice test dealt only with the fungal treatments, aphids were more attracted to leaves from plants harboring Gx-ABT-1 than those with GHA. Moreover, no significant impact was observed for BMYV transmission despite the slight decrease in the viral load in GxABT-1 isolate-treated plants. Our findings constitute a baseline to delve more into the performance of the new endemic isolate B. bassiana in other pathosystems using different treatment methods.
Journal Article
High diversity of fish ectoparasitic monogeneans ( Dactylogyrus ) in the Iberian Peninsula: a case of adaptive radiation?
by
Doadrio, Ignacio
,
Benovics, Michal
,
Scheifler, Mathilde
in
Adaptation, Biological
,
Adaptive radiation
,
Animals
2020
The epicontinental fauna of the Iberian Peninsula is strongly influenced by its geographical history. As the possibilities for dispersion of organisms into and from this region were (and still are) limited, the local fauna consists almost exclusively of endemic species. Almost all Iberian freshwater fishes of the families Leuciscidae and Cyprinidae are endemic and on-going research on these taxa continually uncovers new species. Nevertheless, information on their host-specific parasites remains scarce. In this study, we investigate the diversity and phylogenetic relationships in monogeneans of the genus Dactylogyrus (gill ectoparasites specific to cyprinoid fish) in the Iberian Peninsula. Twenty-two species were collected and identified from 19 host species belonging to Cyprinidae and Leuciscidae. A high degree of endemism was observed, with 21 Dactylogyrus species reported from Iberia only and a single species, D. borealis , also reported from other European regions. Phylogenetic analysis split the endemic Iberian Dactylogyrus into two well-supported clades, the first encompassing Dactylogyrus parasitizing endemic Luciobarbus spp. only, and the second including all Dactylogyrus species of endemic leuciscids and four species of endemic cyprinids. Species delimitation analysis suggests a remarkable diversity and existence of a multitude of cryptic Dactylogyrus species parasitizing endemic leuciscids ( Squalius spp. and representatives of Chondrostoma s.l. ). These results suggest a rapid adaptive radiation of Dactylogyrus in this geographically isolated region, closely associated with their cyprinoid hosts. Moreover, phylogenetic analysis supports that Dactylogyrus parasites colonized the Iberian Peninsula through multiple dispersion events.
Journal Article
Diversity and structure of sparids external microbiota (Teleostei) and its link with monogenean ectoparasites
by
Desdevises, Yves
,
Sanchez-Brosseau, Sophie
,
Magnanou, Elodie
in
Agriculture
,
Biomedical and Life Sciences
,
Environmental Sciences
2022
Background
Animal-associated microbial communities appear to be key factors in host physiology, ecology, evolution and its interactions with the surrounding environment. Teleost fish have received relatively little attention in the study of surface-associated microbiota. Besides the important role of microbiota in homeostasis and infection prevention, a few recent studies have shown that fish mucus microbiota may interact with and attract some specific parasitic species. However, our understanding of external microbial assemblages, in particular regarding the factors that determine their composition and potential interactions with parasites, is still limited. This is the objective of the present study that focuses on a well-known fish-parasite interaction, involving the Sparidae (Teleostei), and their specific monogenean ectoparasites of the
Lamellodiscus
genus. We characterized the skin and gill mucus bacterial communities using a 16S rRNA amplicon sequencing, tested how fish ecological traits and host evolutionary history are related to external microbiota, and assessed if some microbial taxa are related to some
Lamellodiscus
species.
Results
Our results revealed significant differences between skin and gill microbiota in terms of diversity and structure, and that sparids establish and maintain tissue and species-specific bacterial communities despite continuous exposure to water. No phylosymbiosis pattern was detected for either gill or skin microbiota, suggesting that other host-related and environmental factors are a better regulator of host-microbiota interactions. Diversity and structure of external microbiota were explained by host traits: host species, diet and body part. Numerous correlations between the abundance of given bacterial genera and the abundance of given
Lamellodiscus
species have been found in gill mucus, including species-specific associations. We also found that the external microbiota of the only unparasitized sparid species in this study,
Boops boops
, harbored significantly more
Fusobacteria
and three genera,
Shewenella
,
Cetobacterium
and
Vibrio
, compared to the other sparid species, suggesting their potential involvement in preventing monogenean infection.
Conclusions
This study is the first to explore the diversity and structure of skin and gill microbiota from a wild fish family and present novel evidence on the links between gill microbiota and monogenean species in diversity and abundance, paving the way for further studies on understanding host-microbiota-parasite interactions.
Journal Article
Characterization of ecto- and endoparasite communities of wild Mediterranean teleosts by a metabarcoding approach
by
Magnanou, Elodie
,
Scheifler, Mathilde
,
Ruiz-Rodríguez, Magdalena
in
Animals
,
Apicomplexa
,
Apicomplexa - genetics
2019
Next-generation sequencing methods are increasingly used to identify eukaryotic, unicellular and multicellular symbiont communities within hosts. In this study, we analyzed the non-specific reads obtained during a metabarcoding survey of the bacterial communities associated to three different tissues collected from 13 wild Mediterranean teleost fish species. In total, 30 eukaryotic genera were identified as putative parasites of teleosts, associated to skin mucus, gills mucus and intestine: 2 ascomycetes, 4 arthropods, 2 cnidarians, 7 nematodes, 10 platyhelminthes, 4 apicomplexans, 1 ciliate as well as one order in dinoflagellates (Syndiniales). These results highlighted that (1) the metabarcoding approach was able to uncover a large spectrum of symbiotic organisms associated to the fish species studied, (2) symbionts not yet identified in several teleost species were putatively present, (3) the parasitic diversity differed markedly across host species and (4) in most cases, the distribution of known parasitic genera within tissues is in accordance with the literature. The current work illustrates the large insights that can be gained by making maximum use of data from a metabarcoding approach.
Journal Article
Low-diversity bacterial microbiota in Southern Ocean representatives of lanternfish genera Electrona, Protomyctophum and Gymnoscopelus (family Myctophidae)
by
Ruiz-Rodriguez, Magdalena
,
Koubbi, Philippe
,
Scheifler, Mathilde
in
Animal Fins - microbiology
,
Animals
,
Bacteria
2019
Myctophids are among the most abundant mesopelagic teleost fishes worldwide. They are dominant in the Southern Ocean, an extreme environment where they are important both as consumers of zooplankton as well as food items for larger predators. Various studies have investigated myctophids diet, but no data is yet available regarding their associated microbiota, despite that the significance of bacterial communities to fish health and adaptation is increasingly acknowledged. In order to document microbiota in key fish groups from the Southern Ocean, the bacterial communities associated with the gut, fin, gills and light organs of members of six species within the three myctophid genera Electrona, Protomyctophum and Gymnoscopelus were characterized using a 16S rRNA-based metabarcoding approach. Gut communities display limited diversity of mostly fish-specific lineages likely involved in food processing. Fin and skin communities display diversity levels and compositions resembling more those found in surrounding seawater. Community compositions are similar between genera Electrona and Protomyctophum, that differ from those found in Gymnoscopelus and in water. Low abundances of potentially light-emitting bacteria in light organs support the hypothesis of host production of light. This first description of myctophid-associated microbiota, and among the first on fish from the Southern Ocean, emphasizes the need to extend microbiome research beyond economically-important species, and start addressing ecologically-relevant species.
Journal Article
The Drosophila‐parasitizing wasp Leptopilina heterotoma: A comprehensive model system in ecology and evolution
by
Wilhelm, Léonore
,
Scheifler, Mathilde
,
Enriquez, Thomas
in
Associative learning
,
Chemical communication
,
Coexistence
2023
The parasitoid Leptopilina heterotoma has been used as a model system for more than 70 years, contributing greatly to diverse research areas in ecology and evolution. Here, we synthesized the large body of work on L. heterotoma with the aim to identify new research avenues that could be of interest also for researchers studying other parasitoids and insects. We start our review with a description of typical L. heterotoma characteristics, as well as that of the higher taxonomic groups to which this species belongs. We then continue discussing host suitability and immunity, foraging behaviors, as well as fat accumulation and life histories. We subsequently shift our focus towards parasitoid‐parasitoid interactions, including L. heterotoma coexistence within the larger guild of Drosophila parasitoids, chemical communication, as well as mating and population structuring. We conclude our review by highlighting the assets of L. heterotoma as a model system, including its intermediate life history syndromes, the ease of observing and collecting natural hosts and wasps, as well as recent genomic advances. The parasitoid Leptopilina heterotoma has been used as a model system in biology for more than 70 years. This review aims to provide a broad and detailed synthesis of the work performed on this system, including immunity, behavioral ecology, endosymbiotic and trophic interactions, as well as physiology. Overall, the scientific literature on L. heterotoma unites research based on field observations and experiments, as well as laboratory studies, highlighting the versatility of this model system.
Journal Article
Host Species and Body Site Explain the Variation in the Microbiota Associated to Wild Sympatric Mediterranean Teleost Fishes
by
Suzuki, M.
,
Magnanou, E.
,
West, N.
in
Bacteria
,
bacterial communities
,
Biochemistry, biophysics & molecular biology
2020
Microorganisms are an important component in shaping the evolution of hosts and as such, the study of bacterial communities with molecular techniques is shedding light on the complexity of symbioses between bacteria and vertebrates. Teleost fish are a heterogeneous group that live in a wide variety of habitats, and thus a good model group to investigate symbiotic interactions and their influence on host biology and ecology. Here we describe the microbiota of thirteen teleostean species sharing the same environment in the Mediterranean Sea and compare bacterial communities among different species and body sites (external mucus, skin, gills, and intestine). Our results show that Proteobacteria is the dominant phylum present in fish and water. However, the prevalence of other bacterial taxa differs between fish and the surrounding water. Significant differences in bacterial diversity are observed among fish species and body sites, with higher diversity found in the external mucus. No effect of sampling time nor species individual was found. The identification of indicator bacterial taxa further supports that each body site harbors its own characteristic bacterial community. These results improve current knowledge and understanding of symbiotic relationships among bacteria and their fish hosts in the wild since the majority of previous studies focused on captive individuals.
Journal Article
A Comparative Study of the Dynamics and Diversity of IBdellovibrio/I and Like Organisms in Lakes Annecy and Geneva
by
Jacquet, Stéphan
,
Desdevises, Yves
,
Ezzedine, Jade A
in
Biological diversity
,
Comparative analysis
,
Distribution
2022
Bdellovibrio and like organisms (BALOs) are obligate bacterial predators of other Gram-negative bacteria. Here, we used quantitative PCR (qPCR) and recently developed specific primers which target the 16S rRNA gene to explore the abundance and distribution of three families of BALO belonging to the Oligoflexia class (i.e., Bdellovibrionaceae, Peredibacteraceae and Bacteriovoracaceae) over one year in the epilimnion and hypolimnion of Lakes Annecy and Geneva. Peredibacteraceae was the dominant group at all sampling points except at the bottom of Lake Geneva, where Bdellovibrionaceae was found in higher number. In addition, the abundance of BALOs increased significantly during the warmer months. Using high-throughput sequencing (Illumina Miseq), hundreds of OTUs were identified for Bdellovibrionaceae and Peredibacteraceae. Phylogenetic analysis suggests that Bdellovibrionaceae are more diverse than Peredibacteraceae and that some OTUs belong to new species of Bdellovibrionaceae. We also found that dominant OTUs were present simultaneously in the two lakes, while some others were specific to each lake, suggesting an adaptive pattern. Finally, both abundance and diversity of BALOs were poorly associated with abiotic factors except temperature, suggesting the importance of studying biotic relationships, assumed to play a greater role than physico-chemical variables in BALOs’ dynamics and distribution.
Journal Article
A Comparative Study of the Dynamics and Diversity of Bdellovibrio and Like Organisms in Lakes Annecy and Geneva
by
Jacquet, Stéphan
,
Desdevises, Yves
,
Ezzedine, Jade A.
in
Abiotic factors
,
Abundance
,
Aquatic sciences & oceanology
2022
Bdellovibrio and like organisms (BALOs) are obligate bacterial predators of other Gram-negative bacteria. Here, we used quantitative PCR (qPCR) and recently developed specific primers which target the 16S rRNA gene to explore the abundance and distribution of three families of BALO belonging to the Oligoflexia class (i.e., Bdellovibrionaceae, Peredibacteraceae and Bacteriovoracaceae) over one year in the epilimnion and hypolimnion of Lakes Annecy and Geneva. Peredibacteraceae was the dominant group at all sampling points except at the bottom of Lake Geneva, where Bdellovibrionaceae was found in higher number. In addition, the abundance of BALOs increased significantly during the warmer months. Using high-throughput sequencing (Illumina Miseq), hundreds of OTUs were identified for Bdellovibrionaceae and Peredibacteraceae. Phylogenetic analysis suggests that Bdellovibrionaceae are more diverse than Peredibacteraceae and that some OTUs belong to new species of Bdellovibrionaceae. We also found that dominant OTUs were present simultaneously in the two lakes, while some others were specific to each lake, suggesting an adaptive pattern. Finally, both abundance and diversity of BALOs were poorly associated with abiotic factors except temperature, suggesting the importance of studying biotic relationships, assumed to play a greater role than physico-chemical variables in BALOs’ dynamics and distribution.
Journal Article