Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
39 result(s) for "Secher, Anna"
Sort by:
The Effect of Real-Time Continuous Glucose Monitoring in Pregnant Women With Diabetes: A randomized controlled trial
To assess whether intermittent real-time continuous glucose monitoring (CGM) improves glycemic control and pregnancy outcome in unselected women with pregestational diabetes. A total of 123 women with type 1 diabetes and 31 women with type 2 diabetes were randomized to use real-time CGM for 6 days at 8, 12, 21, 27, and 33 weeks in addition to routine care, including self-monitored plasma glucose seven times daily, or routine care only. To optimize glycemic control, real-time CGM readings were evaluated by a diabetes caregiver. HbA1c, self-monitored plasma glucose, severe hypoglycemia, and pregnancy outcomes were recorded, with large-for-gestational-age infants as the primary outcome. Women assigned to real-time CGM (n = 79) had baseline HbA1c similar to that of women in the control arm (n = 75) (median 6.6 [range 5.3-10.0] vs. 6.8% [5.3-10.7]; P = 0.67) (49 [34-86] vs. 51 mmol/mol [34-93]). Forty-nine (64%) women used real-time CGM per protocol. At 33 weeks, HbA1c (6.1 [5.1-7.8] vs. 6.1% [4.8-8.2]; P = 0.39) (43 [32-62] vs. 43 mmol/mol [29-66]) and self-monitored plasma glucose (6.2 [4.7-7.9] vs. 6.2 mmol/L [4.9-7.9]; P = 0.64) were comparable regardless of real-time CGM use, and a similar fraction of women had experienced severe hypoglycemia (16 vs. 16%; P = 0.91). The prevalence of large-for-gestational-age infants (45 vs. 34%; P = 0.19) and other perinatal outcomes were comparable between the arms. In this randomized trial, intermittent use of real-time CGM in pregnancy, in addition to self-monitored plasma glucose seven times daily, did not improve glycemic control or pregnancy outcome in women with pregestational diabetes.
GFRAL is the receptor for GDF15 and is required for the anti-obesity effects of the ligand
GDF15 has potent anti-obesity effects, but its receptor was unknown. GFRAL has now been identified as the receptor that mediates GDF15's effects via central actions in the hindbrain. Growth differentiation factor 15 (GDF15; also known as MIC-1) is a divergent member of the TGF-β superfamily and is associated with body-weight regulation in humans and rodents. However, the cognate receptor of GDF15 is unknown. Here we show that GDF15 binds specifically to GDNF family receptor α-like (GFRAL) with high affinity, and that GFRAL requires association with the coreceptor RET to elicit intracellular signaling in response to GDF15 stimulation. We also found that GDF15-mediated reductions in food intake and body weight of mice with obesity were abolished in GFRAL-knockout mice. We further found that GFRAL expression was limited to hindbrain neurons and not present in peripheral tissues, which suggests that GDF15–GFRAL-mediated regulation of food intake is by a central mechanism. Lastly, given that GDF15 did not increase energy expenditure in treated mice with obesity, the anti-obesity actions of the cytokine are likely driven primarily by a reduction in food intake.
Quantitative maps of protein phosphorylation sites across 14 different rat organs and tissues
Deregulated cellular signalling is a common hallmark of disease, and delineating tissue phosphoproteomes is key to unravelling the underlying mechanisms. Here we present the broadest tissue catalogue of phosphoproteins to date, covering 31,480 phosphorylation sites on 7,280 proteins quantified across 14 rat organs and tissues. We provide the data set as an easily accessible resource via a web-based database, the CPR PTM Resource. A major fraction of the presented phosphorylation sites are tissue-specific and modulate protein interaction networks that are essential for the function of individual organs. For skeletal muscle, we find that phosphotyrosines are over-represented, which is mainly due to proteins involved in glycogenolysis and muscle contraction, a finding we validate in human skeletal muscle biopsies. Tyrosine phosphorylation is involved in both skeletal and cardiac muscle contraction, whereas glycogenolytic enzymes are tyrosine phosphorylated in skeletal muscle but not in the liver. The presented phosphoproteomic method is simple and rapid, making it applicable for screening of diseased tissue samples. The function of proteins is often regulated by their phosphorylation at specific amino-acid residues. The authors of this article have catalogued phosphoproteins and their phosphorylation sites in 14 rat organs and tissues, and provide these data as a resource for researchers.
Semaglutide lowers body weight in rodents via distributed neural pathways
Semaglutide, a glucagon-like peptide 1 (GLP-1) analog, induces weight loss, lowers glucose levels, and reduces cardiovascular risk in patients with diabetes. Mechanistic preclinical studies suggest weight loss is mediated through GLP-1 receptors (GLP-1Rs) in the brain. The findings presented here show that semaglutide modulated food preference, reduced food intake, and caused weight loss without decreasing energy expenditure. Semaglutide directly accessed the brainstem, septal nucleus, and hypothalamus but did not cross the blood-brain barrier; it interacted with the brain through the circumventricular organs and several select sites adjacent to the ventricles. Semaglutide induced central c-Fos activation in 10 brain areas, including hindbrain areas directly targeted by semaglutide, and secondary areas without direct GLP-1R interaction, such as the lateral parabrachial nucleus. Automated analysis of semaglutide access, c-Fos activity, GLP-1R distribution, and brain connectivity revealed that activation may involve meal termination controlled by neurons in the lateral parabrachial nucleus. Transcriptomic analysis of microdissected brain areas from semaglutide-treated rats showed upregulation of prolactin-releasing hormone and tyrosine hydroxylase in the area postrema. We suggest semaglutide lowers body weight by direct interaction with diverse GLP-1R populations and by directly and indirectly affecting the activity of neural pathways involved in food intake, reward, and energy expenditure.
Analytic framework for peptidomics applied to large-scale neuropeptide identification
Large-scale mass spectrometry-based peptidomics for drug discovery is relatively unexplored because of challenges in peptide degradation and identification following tissue extraction. Here we present a streamlined analytical pipeline for large-scale peptidomics. We developed an optimized sample preparation protocol to achieve fast, reproducible and effective extraction of endogenous peptides from sub-dissected organs such as the brain, while diminishing unspecific protease activity. Each peptidome sample was analysed by high-resolution tandem mass spectrometry and the resulting data set was integrated with publically available databases. We developed and applied an algorithm that reduces the peptide complexity for identification of biologically relevant peptides. The developed pipeline was applied to rat hypothalamus and identifies thousands of neuropeptides and their post-translational modifications, which is combined in a resource format for visualization, qualitative and quantitative analyses. Neuropeptide research is challenged by technical difficulties in identifying new bioactive peptides. Here the authors present an analytical pipeline for large-scale peptidomics applied to the rat hypothalamus, identifying thousands of endogenous neuropeptides and their post-translational modifications.
The impact of restricted gestational weight gain by dietary intervention on fetal growth in women with gestational diabetes mellitus
Aims/hypothesisWe aimed to investigate the impact of maternal gestational weight gain (GWG) during dietary treatment on fetal growth in pregnancies complicated by gestational diabetes (GDM).MethodsThis was a retrospective cohort study of 382 women consecutively diagnosed with GDM before 34 weeks’ gestation with live singleton births in our centre (Center for Pregnant Women with Diabetes, Rigshospitalet, Copenhagen, Denmark) between 2011 and 2017. The women were stratified into three groups according to restricted (53%), appropriate (16%) and excessive (31%) weekly GWG during dietary treatment (using the Institute of Medicine guidelines) to estimate compliance with an energy-restricted ‘diabetes diet’ (6000 kJ/day [1434 kcal/day], with approximately 50% of energy intake coming from carbohydrates with a low glycaemic index, and a carbohydrate intake of 175 g/day). Insulin therapy was initiated if necessary, according to local clinical guidelines.ResultsGlucose tolerance, HbA1c, weekly GWG before dietary treatment (difference between weight at GDM diagnosis and pre-pregnancy weight, divided by the number of weeks) and SD score for fetal abdominal circumference were comparable across the three groups at diagnosis of GDM at 276 ± 51 weeks (gestation time is given as weeksdays). The women were followed for 100 ± 51 weeks, during which 54% received supplementary insulin therapy and the average (mean) GWG during dietary treatment was 0 kg, 3 kg and 5 kg in the three groups, respectively. Excessive weekly GWG during dietary treatment, reflecting poor dietary adherence was associated with increasing HbA1c (p = 0.014) from diagnosis of GDM to late pregnancy and infants with a birthweight-SD score of 0.59 ± 1.6. In contrast, restricted weekly GWG during dietary treatment, reflecting strict dietary adherence, was associated with decreasing HbA1c (p = 0.001) from diagnosis of GDM to late pregnancy and infants with a birthweight-SD score of 0.15 ± 1.1, without increased prevalence of infants born small for gestational age. Excessive GWG during dietary treatment and late-pregnancy HbA1c were identified as potentially modifiable clinical predictors of infant birthweight-SD score (p = 0.02 for both variables) after correction for confounders.Conclusions/interpretationRestricted GWG during dietary treatment was associated with healthier fetal growth in women with GDM. GWG during dietary treatment and late-pregnancy HbA1c were identified as potentially modifiable clinical predictors of infant birthweight-SD score.
Integrated Brain Atlas for Unbiased Mapping of Nervous System Effects Following Liraglutide Treatment
Light Sheet Fluorescence Microscopy (LSFM) of whole organs, in particular the brain, offers a plethora of biological data imaged in 3D. This technique is however often hindered by cumbersome non-automated analysis methods. Here we describe an approach to fully automate the analysis by integrating with data from the Allen Institute of Brain Science (AIBS), to provide precise assessment of the distribution and action of peptide-based pharmaceuticals in the brain. To illustrate this approach, we examined the acute central nervous system effects of the glucagon-like peptide-1 (GLP-1) receptor agonist liraglutide. Peripherally administered liraglutide accessed the hypothalamus and brainstem, and led to activation in several brain regions of which most were intersected by projections from neurons in the lateral parabrachial nucleus. Collectively, we provide a rapid and unbiased analytical framework for LSFM data which enables quantification and exploration based on data from AIBS to support basic and translational discovery.
Translating HbA1c measurements into estimated average glucose values in pregnant women with diabetes
Aims/hypothesis This study aimed to examine the relationship between average glucose levels, assessed by continuous glucose monitoring (CGM), and HbA 1c levels in pregnant women with diabetes to determine whether calculations of standard estimated average glucose (eAG) levels from HbA 1c measurements are applicable to pregnant women with diabetes. Methods CGM data from 117 pregnant women (89 women with type 1 diabetes; 28 women with type 2 diabetes) were analysed. Average glucose levels were calculated from 5–7 day CGM profiles (mean 1275 glucose values per profile) and paired with a corresponding (±1 week) HbA 1c measure. In total, 688 average glucose–HbA 1c pairs were obtained across pregnancy (mean six pairs per participant). Average glucose level was used as the dependent variable in a regression model. Covariates were gestational week, study centre and HbA 1c . Results There was a strong association between HbA 1c and average glucose values in pregnancy (coefficient 0.67 [95% CI 0.57, 0.78]), i.e. a 1% (11 mmol/mol) difference in HbA 1c corresponded to a 0.67 mmol/l difference in average glucose. The random effects model that included gestational week as a curvilinear (quadratic) covariate fitted best, allowing calculation of a pregnancy-specific eAG (PeAG). This showed that an HbA 1c of 8.0% (64 mmol/mol) gave a PeAG of 7.4–7.7 mmol/l (depending on gestational week), compared with a standard eAG of 10.2 mmol/l. The PeAG associated with maintaining an HbA 1c level of 6.0% (42 mmol/mol) during pregnancy was between 6.4 and 6.7 mmol/l, depending on gestational week. Conclusions/interpretation The HbA 1c –average glucose relationship is altered by pregnancy. Routinely generated standard eAG values do not account for this difference between pregnant and non-pregnant individuals and, thus, should not be used during pregnancy. Instead, the PeAG values deduced in the current study are recommended for antenatal clinical care.
Breastfeeding at night is rarely followed by hypoglycaemia in women with type 1 diabetes using carbohydrate counting and flexible insulin therapy
Aims/hypothesisHypoglycaemia in association with breastfeeding is a feared condition in mothers with type 1 diabetes. Thus, routine carbohydrate intake at each breastfeed, particularly at night, is often recommended despite lack of evidence. We aimed to evaluate glucose levels during breastfeeding, focusing on whether night-time breastfeeding induced hypoglycaemia in mothers with type 1 diabetes.MethodsOf 43 consecutive mothers with type 1 diabetes, 33 (77%) were included prospectively 1 month after a singleton delivery. Twenty-six mothers (mean [SD] age 30.7 [5.8] years, mean [SD] duration of diabetes 18.6 [10.3] years) were breastfeeding and seven mothers (mean [SD] age 31.7 [5.6] years, mean [SD] duration of diabetes 20.4 [6.2] years) were bottle-feeding their infants with formula. All were experienced in carbohydrate counting using individually tailored insulin therapy with insulin analogues (45% on insulin pump, 55% on multiple daily injections). Thirty-two women with type 1 diabetes, matched for age ±1 year and BMI ±1 kg/m2, who had not given birth or breastfed in the previous year, served as a control group. Blinded continuous glucose monitoring (CGM) for 6 days was applied at 1, 2 and 6 months postpartum in the breastfeeding mothers who recorded breastfeeds and carbohydrate intake at each CGM period. CGM was applied at 1 month postpartum in the formula-feeding mothers and once in the control women. The insulin dose was individually tailored after each CGM period.ResultsThe percentage of night-time spent with CGM <4.0 mmol/l was low (4.6%, 3.1% and 2.7% at each CGM period in the breastfeeding mothers vs 1.6% in the control women, p = 0.77), and the breastfeeding mothers spent a greater proportion of the night-time in the target range of 4.0–10.0 mmol/l (p = 0.01). Symptomatic hypoglycaemia occurred two or three times per week at 1, 2 and 6 months postpartum in both breastfeeding mothers and the control women. Severe hypoglycaemia was reported by one mother (3%) during the 6 month postpartum period and by one control woman (3%) in the previous year (p = 0.74). In breastfeeding mothers at 1 month, the insulin dose was 18% (−67% to +48%) lower than before pregnancy (p = 0.04). In total, carbohydrate was not consumed in relation to 438 recorded night-time breastfeeds, and CGM <4.0 mmol/l within 3 h occurred after 20 (4.6%) of these breastfeeds.Conclusions/interpretationThe percentage of night-time spent in hypoglycaemia was low in the breastfeeding mothers with type 1 diabetes and was similar in the control women. Breastfeeding at night-time rarely induced hypoglycaemia. The historical recommendation of routine carbohydrate intake at night-time breastfeeding may be obsolete in mothers with type 1 diabetes who have properly reduced insulin dose with sufficient carbohydrate intake.Trial registrationClinicalTrials.gov NCT02898428
A genetic map of the mouse dorsal vagal complex and its role in obesity
The brainstem dorsal vagal complex (DVC) is known to regulate energy balance and is the target of appetite-suppressing hormones, such as glucagon-like peptide 1 (GLP-1). Here we provide a comprehensive genetic map of the DVC and identify neuronal populations that control feeding. Combining bulk and single-nucleus gene expression and chromatin profiling of DVC cells, we reveal 25 neuronal populations with unique transcriptional and chromatin accessibility landscapes and peptide receptor expression profiles. GLP-1 receptor (GLP-1R) agonist administration induces gene expression alterations specific to two distinct sets of Glp1r neurons—one population in the area postrema and one in the nucleus of the solitary tract that also expresses calcitonin receptor ( Calcr ). Transcripts and regions of accessible chromatin near obesity-associated genetic variants are enriched in the area postrema and the nucleus of the solitary tract neurons that express Glp1r and/or Calcr , and activating several of these neuronal populations decreases feeding in rodents. Thus, DVC neuronal populations associated with obesity predisposition suppress feeding and may represent therapeutic targets for obesity. Ludwig et al. map transcription and chromatin accessibility in single cells across the brainstem dorsal vagal complex, thereby identifying neuronal populations, including some that control feeding.