Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
12 result(s) for "Sedore, Christine A."
Sort by:
Impact of genetic background and experimental reproducibility on identifying chemical compounds with robust longevity effects
Limiting the debilitating consequences of ageing is a major medical challenge of our time. Robust pharmacological interventions that promote healthy ageing across diverse genetic backgrounds may engage conserved longevity pathways. Here we report results from the Caenorhabditis Intervention Testing Program in assessing longevity variation across 22 Caenorhabditis strains spanning 3 species, using multiple replicates collected across three independent laboratories. Reproducibility between test sites is high, whereas individual trial reproducibility is relatively low. Of ten pro-longevity chemicals tested, six significantly extend lifespan in at least one strain. Three reported dietary restriction mimetics are mainly effective across C. elegans strains, indicating species and strain-specific responses. In contrast, the amyloid dye ThioflavinT is both potent and robust across the strains. Our results highlight promising pharmacological leads and demonstrate the importance of assessing lifespans of discrete cohorts across repeat studies to capture biological variation in the search for reproducible ageing interventions. Irreproducibility of biological findings is a major challenge for drug development. Here the authors examine the lifespans of 22 worm strains in three different laboratories and the effects of ten known chemicals to assess reproducibility in the face of variations in genetic background, chemical treatment and lab environment.
Metformin treatment of diverse Caenorhabditis species reveals the importance of genetic background in longevity and healthspan extension outcomes
Metformin, the most commonly prescribed anti‐diabetes medication, has multiple reported health benefits, including lowering the risks of cardiovascular disease and cancer, improving cognitive function with age, extending survival in diabetic patients, and, in several animal models, promoting youthful physiology and lifespan. Due to its longevity and health effects, metformin is now the focus of the first proposed clinical trial of an anti‐aging drug—the Targeting Aging with Metformin (TAME) program. Genetic variation will likely influence outcomes when studying metformin health effects in human populations. To test for metformin impact in diverse genetic backgrounds, we measured lifespan and healthspan effects of metformin treatment in three Caenorhabditis species representing genetic variability greater than that between mice and humans. We show that metformin increases median survival in three C. elegans strains, but not in C. briggsae and C. tropicalis strains. In C. briggsae, metformin either has no impact on survival or decreases lifespan. In C. tropicalis, metformin decreases median survival in a dose‐dependent manner. We show that metformin prolongs the period of youthful vigor in all C. elegans strains and in two C. briggsae strains, but that metformin has a negative impact on the locomotion of C. tropicalis strains. Our data demonstrate that metformin can be a robust promoter of healthy aging across different genetic backgrounds, but that genetic variation can determine whether metformin has positive, neutral, or negative lifespan/healthspan impact. These results underscore the importance of tailoring treatment to individuals when testing for metformin health benefits in diverse human populations. We monitored metformin impact in nine strains spanning three Caenorhabditis species that feature a nucleotide diversity greater than that between mouse and humans. We find that metformin promotes healthy aging across diverse genetic backgrounds, but that genetic background can determine whether metformin has a positive, neutral, or negative effect. Data demonstrate the potential broad reach of metformin but also underscore that individual genetics will underlie efficacy over a diverse test set.
Antioxidants green tea extract and nordihydroguaiaretic acid confer species and strain-specific lifespan and health effects in Caenorhabditis nematodes
The Caenorhabditis Intervention Testing Program (CITP) is an NIH-funded research consortium of investigators who conduct analyses at three independent sites to identify chemical interventions that reproducibly promote health and lifespan in a robust manner. The founding principle of the CITP is that compounds with positive effects across a genetically diverse panel of Caenorhabditis species and strains are likely engaging conserved biochemical pathways to exert their effects. As such, interventions that are broadly efficacious might be considered prominent compounds for translation for pre-clinical research and human clinical applications. Here, we report results generated using a recently streamlined pipeline approach for the evaluation of the effects of chemical compounds on lifespan and health. We studied five compounds previously shown to extend C. elegans lifespan or thought to promote mammalian health: 17α-estradiol, acarbose, green tea extract, nordihydroguaiaretic acid, and rapamycin. We found that green tea extract and nordihydroguaiaretic acid extend Caenorhabditis lifespan in a species-specific manner. Additionally, these two antioxidants conferred assay-specific effects in some studies—for example, decreasing survival for certain genetic backgrounds in manual survival assays in contrast with extended lifespan as assayed using automated C. elegans Lifespan Machines. We also observed that GTE and NDGA impact on older adult mobility capacity is dependent on genetic background, and that GTE reduces oxidative stress resistance in some Caenorhabditis strains. Overall, our analysis of the five compounds supports the general idea that genetic background and assay type can influence lifespan and health effects of compounds, and underscores that lifespan and health can be uncoupled by chemical interventions.
Transcriptomic sexual conflict at two evolutionary timescales revealed by experimental evolution in Caenorhabditis elegans
Sex-specific regulation of gene expression is the most plausible way for generating sexually differentiated phenotypes from an essentially shared genome. However, since genetic material is shared, sex-specific selection in one sex can have an indirect response in the other sex. From a gene expression perspective, this tethered response can move one sex away from their wildtype expression state and impact potentially many gene regulatory networks. Here, using experimental evolution in the model nematode we explore the coupling of direct sexual selection on males with the transcriptomic response in males and females over microevolutionary timescales to uncover the extent to which post-insemination reproductive traits share a genetic basis between the sexes. We find that differential gene expression evolved in a sex-specific manner in males, while in females indirect selection causes an evolved response. Almost all differentially expressed genes were downregulated in both evolved males and females. Moreover, 97% of significantly differentially expressed genes in males and 69% of significantly differentially expressed genes in females have wildtype female-biased expression profile. Changes in gene expression profiles were likely driven through -acting pathways that are shared between the sexes. We found no evidence that the core dosage compensation machinery was impacted by experimental evolution. Together these data suggest a de-feminization of the male transcriptome and masculinization of the female transcriptome driven by direct selection on male sperm competitive ability. Our results indicate that on short evolutionary timescales sexual selection can generate putative sexual conflict in expression space.
The broccoli derivative sulforaphane extends lifespan by slowing the transcriptional aging clock
Sulforaphane, an organosulfur isothiocyanate derived from cruciferous vegetables, has been shown to inhibit inflammation, oxidative stress, and cancer cell growth. To explore the potential of sulforaphane as a candidate natural compound for promoting longevity more generally, we tested the dose and age-specific effects of sulforaphane on C. elegans longevity, finding that it can extend lifespan by more than 50% at the most efficacious doses, but that treatment must be initiated early in life to be effective. We then created a novel, gene-specific, transcriptional aging clock, which demonstrated that sulforaphane-treated individuals exhibited a \"transcriptional age\" that was approximately four days younger than age-matched controls, representing a nearly 20% reduction in biological age. The clearest transcriptional responses were detoxification pathways, which, together with the shape of the dose-response curve, indicates a likely hormetic response to sulforaphane. These results support the idea that robust longevity-extending interventions can act via global effects across the organism, as revealed by systems level changes in gene expression.Sulforaphane, an organosulfur isothiocyanate derived from cruciferous vegetables, has been shown to inhibit inflammation, oxidative stress, and cancer cell growth. To explore the potential of sulforaphane as a candidate natural compound for promoting longevity more generally, we tested the dose and age-specific effects of sulforaphane on C. elegans longevity, finding that it can extend lifespan by more than 50% at the most efficacious doses, but that treatment must be initiated early in life to be effective. We then created a novel, gene-specific, transcriptional aging clock, which demonstrated that sulforaphane-treated individuals exhibited a \"transcriptional age\" that was approximately four days younger than age-matched controls, representing a nearly 20% reduction in biological age. The clearest transcriptional responses were detoxification pathways, which, together with the shape of the dose-response curve, indicates a likely hormetic response to sulforaphane. These results support the idea that robust longevity-extending interventions can act via global effects across the organism, as revealed by systems level changes in gene expression.
Computer prediction and genetic analysis identifies retinoic acid modulation as a driver of conserved longevity pathways in genetically-diverse Caenorhabditis nematodes
Aging is a pan-metazoan process with significant consequences for human health and society-discovery of new compounds that ameliorate the negative health impacts of aging promise to be of tremendous benefit across a number of age-based comorbidities. One method to prioritize a testable subset of the nearly infinite universe of potential compounds is to use computational prediction of their likely anti-aging capacity. Here we present a survey of longevity effects for 16 compounds suggested by a previously published computational prediction set, capitalizing upon the comprehensive, multi-species approach utilized by the Intervention Testing Program (CITP). While eleven compounds (aldosterone, arecoline, bortezomib, dasatinib, decitabine, dexamethasone, erlotinib, everolimus, gefitinib, temsirolimus, and thalidomide) either had no effect on median lifespan or were toxic, five compounds (all-trans retinoic acid, berberine, fisetin, propranolol, and ritonavir) extended lifespan in . These computer predictions yield a remarkable positive hit rate of 30%. Deeper genetic characterization of the longevity effects of one of the most efficacious compounds, the endogenous signaling ligand all-trans retinoic acid (atRA, designated tretinoin in medical products), which is widely prescribed for treatment of acne, skin photoaging and acute promyelocytic leukemia, demonstrated a requirement for the regulatory kinases AKT-1 and AKT-2. While the canonical Akt-target FOXO/DAF-16 was largely dispensable, other conserved Akt-targets (Nrf2/SKN-1 and HSF1/HSF-1), as well as the conserved catalytic subunit of AMPK AAK-2, were all necessary for longevity extension by atRA. Evolutionary conservation of retinoic acid as a signaling ligand and the structure of the downstream effector network of retinoic acid combine to suggest that the all-trans retinoic acid pathway is an ancient metabolic regulatory system that can modulate lifespan. Our results highlight the potential of combining computational prediction of longevity interventions with the power of nematode functional genetics and underscore that the manipulation of a conserved metabolic regulatory circuit by co-opting endogenous signaling molecules is a powerful approach for discovering aging interventions.
The coupling between healthspan and lifespan in Caenorhabditis depends on complex interactions between compound intervention and genetic background
Aging is characterized by declining health that results in decreased neuromuscular function and cellular resilience. The relationship between lifespan and health, and the influence of genetic background on that relationship, has important implications in the development of anti-aging interventions. Here we combined survival under thermal and oxidative stress with swimming performance, to evaluate health effects across a nematode genetic diversity panel for three compounds previously studied in the Caenorhabditis Intervention Testing Program - NP1, propyl gallate, and resveratrol. We show that oxidative stress resistance and thermotolerance vary with compound intervention, genetic background, and age. The effects of tested compounds on swimming locomotion, in contrast, are largely species-specific. Additionally, thermotolerance, but not oxidative stress or swimming ability, correlates with lifespan. Our results demonstrate the importance of assessing health and lifespan across genetic backgrounds in the effort to identify reproducible aging interventions. Competing Interest Statement The authors have declared no competing interest. Footnotes * https://doi.org/10.6084/m9.figshare.c.5089073
Automated Lifespan Determination Across Caenorhabditis Strains and Species Reveals Assay-Specific Effects of Chemical Interventions
The goal of the Caenorhabditis Intervention Testing Program is to identify robust and reproducible pro-longevity interventions that are efficacious across genetically diverse cohorts in the Caenorhabditis genus. The project design features multiple experimental replicates collected by three different laboratories. Our initial effort employed fully manual survival assays. With an interest in increasing throughput, we explored automation with flatbed scanner-based Automated Lifespan Machines (ALMs). We used ALMs to measure survivorship of 22 Caenorhabditis strains spanning three species. Additionally, we tested five chemicals that we previously found extended lifespan in manual assays. Overall, we found similar sources of variation among trials for the ALM and our previous manual assays, verifying reproducibility of outcome. Survival assessment was generally consistent between the manual and the ALM assays, although we did observe radically contrasting results for certain compound interventions. We found that particular lifespan outcome differences could be attributed to protocol elements such as enhanced light exposure of specific compounds in the ALM, underscoring that differences in technical details can influence outcomes and therefore interpretation. Overall, we demonstrate that the ALMs effectively reproduce a large, conventionally scored dataset from a diverse test set, independently validating ALMs as a robust and reproducible approach towards aging-intervention screening. Footnotes * https://doi.org/10.6084/m9.figshare.c.4580546.v1
High-throughput imaging of Caenorhabditis elegans aging using collective activity monitoring
The genetic manipulability and short lifespan of C. elegans make it an important model for aging research. Widely applied methods for measurements of worm aging based on manual observation are labor intensive and low-throughput. Here, we describe the Worm Collective Activity Monitoring Platform (WormCamp), a system for assaying aging in C. elegans by monitoring activity of populations of worms in standard 24-well plates. We show that metrics based on the rate of decline in collective activity can be used to estimate the average lifespan and locomotor healthspan in the population. Using the WormCamp, we assay a panel of highly divergent natural isolates of C. elegans and show that both lifespan and locomotor healthspan display substantial heritability. To facilitate analysis of large numbers of worms, we developed a robotic imaging system capable of simultaneous automated monitoring of activity, lifespan, and locomotor healthspan in up to 2,304 populations containing a total of ~90,000 animals. We applied the automated system to conduct a large-scale RNA interference screen for genes that affect lifespan and locomotor healthspan. The WormCamp system is complementary to other current automated methods for assessing C. elegans aging and is well suited for efficiently screening large numbers of conditions.
Antioxidants green tea extract and nordihydroguaiaretic acid confer species and strain specific lifespan and health effects in Caenorhabditis nematodes
The Caenorhabditis Intervention Testing Program (CITP) is an NIH-funded research consortium of investigators who conduct analyses at three independent sites to identify chemical interventions that reproducibly promote health and lifespan in a robust manner. The founding principle of the CITP is that compounds with positive effects across a genetically diverse panel of Caenorhabditis species and strains are likely engaging conserved biochemical pathways to exert their effects. As such, interventions that are broadly efficacious might be considered prominent compounds for translation for pre-clinical research and human clinical applications. Here, we report results generated using a recently streamlined pipeline approach for the evaluation of the effects of chemical compounds on lifespan and health. We studied five compounds previously shown to extend C. elegans lifespan or thought to promote mammalian health: 17α-estradiol, acarbose, green tea extract, nordihydroguaiaretic acid, and rapamycin. We found that green tea extract and nordihydroguaiaretic acid extend Caenorhabditis lifespan in a species-specific manner. Additionally, these two antioxidants conferred assay-specific effects in some studies—for example, decreasing survival for certain genetic backgrounds in manual survival assays in contrast with extended lifespan as assayed using automated C. elegans Lifespan Machines. We also observed that GTE and NDGA impact on older adult mobility capacity is dependent on genetic background, and that GTE reduces oxidative stress resistance in some Caenorhabditis strains. Overall, our analysis of the five compounds supports the general idea that genetic background and assay type can influence lifespan and health effects of compounds, and underscores that lifespan and health can be uncoupled by chemical interventions.