Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
52
result(s) for
"Seiser, Christian"
Sort by:
Transcription and beyond: the role of mammalian class I lysine deacetylases
by
Moser, Mirjam Andrea
,
Hagelkruys, Astrid
,
Seiser, Christian
in
Animal Genetics and Genomics
,
Animals
,
Biochemistry
2014
The Rpd3-like members of the class I lysine deacetylase family are important regulators of chromatin structure and gene expression and have pivotal functions in the control of proliferation, differentiation and development. The highly related class I deacetylases HDAC1 and HDAC2 have partially overlapping but also isoform-specific roles in diverse biological processes, whereas HDAC3 and HDAC8 have unique functions. This review describes the role of class I KDACs in the regulation of transcription as well as their non-transcriptional functions, in particular their contributions to splicing, mitosis/meiosis, replication and DNA repair. During the past years, a number of mouse loss-of-function studies provided new insights into the individual roles of class I deacetylases in cell cycle control, differentiation and tumorigenesis. Simultaneous ablation of HDAC1 and HDAC2 or single deletion of Hdac3 severely impairs cell cycle progression in all proliferating cell types indicating that these class I deacetylases are promising targets for small molecule inhibitors as anti-tumor drugs.
Journal Article
Histone deacetylase function in CD4+ T cells
2018
The differentiation of T helper cell subsets and their acquisition of effector functions are accompanied by changes in gene expression programmes, which in part are regulated and maintained by epigenetic processes. Histone deacetylases (HDACs) and histone acetyltransferases (HATs) are key epigenetic regulators that function by mediating dynamic changes in the acetylation of histones at lysine residues. In addition, many non-histone proteins are also acetylated, and reversible acetylation affects their functional properties, demonstrating that HDACs mediate effects beyond the epigenetic regulation of gene expression. In this Review, we discuss studies revealing that HDACs are key regulators of CD4+ T cell-mediated immunity in mice and humans and that HDACs are promising targets in T cell-mediated immune diseases. Finally, we discuss unanswered questions and future research directions to promote the concept that isoform-selective HDAC inhibitors might broaden the clinical application of HDAC inhibitors beyond their current use in certain types of cancer.
Journal Article
A toolbox for class I HDACs reveals isoform specific roles in gene regulation and protein acetylation
by
Bürckstümmer, Tilmann
,
Bhaskara, Srividya
,
Bock, Christoph
in
Acetylation
,
Analysis
,
Antibodies
2022
The class I histone deacetylases are essential regulators of cell fate decisions in health and disease. While pan- and class-specific HDAC inhibitors are available, these drugs do not allow a comprehensive understanding of individual HDAC function, or the therapeutic potential of isoform-specific targeting. To systematically compare the impact of individual catalytic functions of HDAC1, HDAC2 and HDAC3, we generated human HAP1 cell lines expressing catalytically inactive HDAC enzymes. Using this genetic toolbox we compare the effect of individual HDAC inhibition with the effects of class I specific inhibitors on cell viability, protein acetylation and gene expression. Individual inactivation of HDAC1 or HDAC2 has only mild effects on cell viability, while HDAC3 inactivation or loss results in DNA damage and apoptosis. Inactivation of HDAC1/HDAC2 led to increased acetylation of components of the COREST co-repressor complex, reduced deacetylase activity associated with this complex and derepression of neuronal genes. HDAC3 controls the acetylation of nuclear hormone receptor associated proteins and the expression of nuclear hormone receptor regulated genes. Acetylation of specific histone acetyltransferases and HDACs is sensitive to inactivation of HDAC1/HDAC2. Over a wide range of assays, we determined that in particular HDAC1 or HDAC2 catalytic inactivation mimics class I specific HDAC inhibitors. Importantly, we further demonstrate that catalytic inactivation of HDAC1 or HDAC2 sensitizes cells to specific cancer drugs. In summary, our systematic study revealed isoform-specific roles of HDAC1/2/3 catalytic functions. We suggest that targeted genetic inactivation of particular isoforms effectively mimics pharmacological HDAC inhibition allowing the identification of relevant HDACs as targets for therapeutic intervention.
Journal Article
The domesticated transposon protein L1TD1 associates with its ancestor L1 ORF1p to promote LINE-1 retrotransposition
by
Chiocca, Susanna
,
Phan-Canh, Trinh
,
Beck, Mirjam A
in
Ablation
,
Cell Line, Tumor
,
Cell viability
2025
Repression of retrotransposition is crucial for the successful fitness of a mammalian organism. The domesticated transposon protein L1TD1, derived from LINE-1 (L1) ORF1p, is an RNA-binding protein that is expressed only in some cancers and early embryogenesis. In human embryonic stem cells, it is found to be essential for maintaining pluripotency. In cancer, L1TD1 expression is highly correlative with malignancy progression and as such considered a potential prognostic factor for tumors. However, its molecular role in cancer remains largely unknown. Our findings reveal that DNA hypomethylation induces the expression of L1TD1 in HAP1 human tumor cells. L1TD1 depletion significantly modulates both the proteome and transcriptome and thereby reduces cell viability. Notably, L1TD1 associates with L1 transcripts and interacts with L1 ORF1p protein, thereby facilitating L1 retrotransposition. Our data suggest that L1TD1 collaborates with its ancestral L1 ORF1p as an RNA chaperone, ensuring the efficient retrotransposition of L1 retrotransposons, rather than directly impacting the abundance of L1TD1 targets. In this way, L1TD1 might have an important role not only during early development but also in tumorigenesis.
Journal Article
Distinct modes of action applied by transcription factors STAT1 and IRF1 to initiate transcription of the IFN-γ-inducible gbp2 gene
by
Ramsauer, Katrin
,
Kröger, Andrea
,
Seiser, Christian
in
Animals
,
Biological Sciences
,
Chromatin
2007
A subgroup of genes induced by IFN-γ requires both STAT1 and IRF1 for transcriptional activation. Using WT, stat1⁻/⁻, or irf1⁻/⁻ cells, we analyzed the changes induced by IFN-γ in gbp2 promoter chromatin. STAT1 associated with the promoter independently of IRF1 and played an essential role in the ordered recruitment of the coactivator/histone acetyl transferase CREB-binding protein (CBP) and the histone deacetylase HDAC1. Hyperacetylation of histone 4 also required STAT1. Phosphorylation at S727 in the transactivating domain increased transcriptional activity of STAT1. In cells expressing a STAT1S727A-mutant CBP recruitment, histone 4 hyperacetylation and RNA polymerase II association with the gbp2 promoter were strongly reduced. IRF1 association with the gbp2 promoter followed that of STAT1, but STAT1 association with DNA or histone hyperacetylation were not necessary for IRF1 binding. RNA polymerase II association with the gbp2 promoter required both STAT1 and IRF1, suggesting that both proteins mediate essential steps in transcriptional activation. IRF1, but not STAT1, was found to coimmunoprecipitate with RNA polymerase II. Together, the data support the assumption that the main role of STAT1 in activating gbp2 transcription is to provide transcriptionally competent chromatin, whereas the function of IRF1 may lie in directly contacting RNA polymerase II-containing transcriptional complexes.
Journal Article
HDAC1 Controls CD8+ T Cell Homeostasis and Antiviral Response
by
Ellmeier, Wilfried
,
Gil-Cruz, Cristina
,
Firner, Sonja
in
Acetylation
,
Animals
,
Antiviral agents
2014
Reversible lysine acetylation plays an important role in the regulation of T cell responses. HDAC1 has been shown to control peripheral T helper cells, however the role of HDAC1 in CD8+ T cell function remains elusive. By using conditional gene targeting approaches, we show that LckCre-mediated deletion of HDAC1 led to reduced numbers of thymocytes as well as peripheral T cells, and to an increased fraction of CD8+CD4- cells within the CD3/TCRβlo population, indicating that HDAC1 is essential for the efficient progression of immature CD8+CD4- cells to the DP stage. Moreover, CD44hi effector CD8+ T cells were enhanced in mice with a T cell-specific deletion of HDAC1 under homeostatic conditions and HDAC1-deficient CD44hi CD8+ T cells produced more IFNγ upon ex vivo PMA/ionomycin stimulation in comparison to wild-type cells. Naïve (CD44l°CD62L+) HDAC1-null CD8+ T cells displayed a normal proliferative response, produced similar amounts of IL-2 and TNFα, slightly enhanced amounts of IFNγ, and their in vivo cytotoxicity was normal in the absence of HDAC1. However, T cell-specific loss of HDAC1 led to a reduced anti-viral CD8+ T cell response upon LCMV infection and impaired expansion of virus-specific CD8+ T cells. Taken together, our data indicate that HDAC1 is required for the efficient generation of thymocytes and peripheral T cells, for proper CD8+ T cell homeostasis and for an efficient in vivo expansion and activation of CD8+ T cells in response to LCMV infection.
Journal Article
Targeting foam cell formation in inflammatory brain diseases by the histone modifier MS‐275
by
Weinhofer, Isabelle
,
Moos, Verena
,
Forss‐Petter, Sonja
in
Acute Disease
,
Adrenoleukodystrophy - drug therapy
,
Adrenoleukodystrophy - immunology
2020
Objective To assess class I‐histone deacetylase (HDAC) inhibition on formation of lipid‐accumulating, disease‐promoting phagocytes upon myelin load in vitro, relevant for neuroinflammatory disorders like multiple sclerosis (MS) and cerebral X‐linked adrenoleukodystrophy (X‐ALD). Methods Immunohistochemistry on postmortem brain tissue of acute MS (n = 6) and cerebral ALD (n = 4) cases to analyze activation and foam cell state of phagocytes. RNA‐Seq of in vitro differentiated healthy macrophages (n = 8) after sustained myelin‐loading to assess the metabolic shift associated with foam cell formation. RNA‐Seq analysis of genes linked to lipid degradation and export in MS‐275‐treated human HAP1 cells and RT‐qPCR analysis of HAP1 cells knocked out for individual members of class I HDACs or the corresponding enzymatically inactive knock‐in mutants. Investigation of intracellular lipid/myelin content after MS‐275 treatment of myelin‐laden human foam cells. Analysis of disease characteristic very long‐chain fatty acid (VLCFA) metabolism and inflammatory state in MS‐275‐treated X‐ALD macrophages. Results Enlarged foam cells coincided with a pro‐inflammatory, lesion‐promoting phenotype in postmortem tissue of MS and cerebral ALD patients. Healthy in vitro myelin laden foam cells upregulated genes linked to LXRα/PPARγ pathways and mimicked a program associated with tissue repair. Treating these cells with MS‐275, amplified this gene transcription program and significantly reduced lipid and cholesterol accumulation and, thus, foam cell formation. In macrophages derived from X‐ALD patients, MS‐275 improved the disease‐associated alterations of VLCFA metabolism and reduced the pro‐inflammatory status of these cells. Interpretation These findings identify class I‐HDAC inhibition as a potential novel strategy to prevent disease promoting foam cell formation in CNS inflammation.
Journal Article
Epigenetic Regulation of a Murine Retrotransposon by a Dual Histone Modification Mark
2010
Large fractions of eukaryotic genomes contain repetitive sequences of which the vast majority is derived from transposable elements (TEs). In order to inactivate those potentially harmful elements, host organisms silence TEs via methylation of transposon DNA and packaging into chromatin associated with repressive histone marks. The contribution of individual histone modifications in this process is not completely resolved. Therefore, we aimed to define the role of reversible histone acetylation, a modification commonly associated with transcriptional activity, in transcriptional regulation of murine TEs. We surveyed histone acetylation patterns and expression levels of ten different murine TEs in mouse fibroblasts with altered histone acetylation levels, which was achieved via chemical HDAC inhibition with trichostatin A (TSA), or genetic inactivation of the major deacetylase HDAC1. We found that one LTR retrotransposon family encompassing virus-like 30S elements (VL30) showed significant histone H3 hyperacetylation and strong transcriptional activation in response to TSA treatment. Analysis of VL30 transcripts revealed that increased VL30 transcription is due to enhanced expression of a limited number of genomic elements, with one locus being particularly responsive to HDAC inhibition. Importantly, transcriptional induction of VL30 was entirely dependent on the activation of MAP kinase pathways, resulting in serine 10 phosphorylation at histone H3. Stimulation of MAP kinase cascades together with HDAC inhibition led to simultaneous phosphorylation and acetylation (phosphoacetylation) of histone H3 at the VL30 regulatory region. The presence of the phosphoacetylation mark at VL30 LTRs was linked with full transcriptional activation of the mobile element. Our data indicate that the activity of different TEs is controlled by distinct chromatin modifications. We show that activation of a specific mobile element is linked to a dual epigenetic mark and propose a model whereby phosphoacetylation of histone H3 is crucial for full transcriptional activation of VL30 elements.
Journal Article
Vorinostat in the acute neuroinflammatory form of X‐linked adrenoleukodystrophy
by
Bauer, Jan
,
Forss‐Petter, Sonja
,
Wiesinger, Christoph
in
Acute Disease
,
Adrenoleukodystrophy - cerebrospinal fluid
,
Adrenoleukodystrophy - diagnostic imaging
2020
Objective To identify a pharmacological compound targeting macrophages, the most affected immune cells in inflammatory X‐linked adrenoleukodystrophy (cerebral X‐ALD) caused by ABCD1 mutations and involved in the success of hematopoietic stem cell transplantation and gene therapy. Methods A comparative database analysis elucidated the epigenetic repressing mechanism of the related ABCD2 gene in macrophages and identified the histone deacetylase (HDAC) inhibitor Vorinostat as a compound to induce ABCD2 in these cells to compensate for ABCD1 deficiency. In these cells, we investigated ABCD2 and pro‐inflammatory gene expression, restoration of defective peroxisomal β‐oxidation activity, accumulation of very long‐chain fatty acids (VLCFAs) and their differentiation status. We investigated ABCD2 and pro‐inflammatory gene expression, restoration of defective peroxisomal ß‐oxidation activity, accumulation of very long‐chain fatty acids (VLCFA) and differentiation status. Three advanced cerebral X‐ALD patients received Vorinostat and CSF and MRI diagnostics was carried out in one patient after 80 days of treatment. Results Vorinostat improved the metabolic defects in X‐ALD macrophages by stimulating ABCD2 expression, peroxisomal ß‐oxidation, and ameliorating VLCFA accumulation. Vorinostat interfered with pro‐inflammatory skewing of X‐ALD macrophages by correcting IL12B expression and further reducing monocyte differentiation. Vorinostat normalized the albumin and immunoglobulin CSF‐serum ratios, but not gadolinium enhancement upon 80 days of treatment. Interpretation The beneficial effects of HDAC inhibitors on macrophages in X‐ALD and the improvement of the blood‐CSF/blood‐brain barrier are encouraging for future investigations. In contrast with Vorinostat, less toxic macrophage‐specific HDAC inhibitors might improve also the clinical state of X‐ALD patients with advanced inflammatory demyelination.
Journal Article
Crucial function of histone deacetylase 1 for differentiation of teratomas in mice and humans
2010
Histone deacetylase (HDAC) inhibitors induce cell cycle arrest, differentiation or apoptosis in tumour cells and are, therefore, promising anti‐cancer reagents. However, the specific HDAC isoforms that mediate these effects are not yet identified. To explore the role of HDAC1 in tumourigenesis and tumour proliferation, we established an experimental teratoma model using wild‐type and HDAC1‐deficient embryonic stem cells. HDAC1‐deficient teratomas showed no significant difference in size compared with wild‐type teratomas. Surprisingly, loss of HDAC1 was not only linked to increased apoptosis, but also to significantly enhanced proliferation. Epithelial structures showed reduced differentiation as monitored by Oct3/4 expression and changed E‐cadherin localization and displayed up‐regulated expression of SNAIL1, a regulator of epithelial cell plasticity. Increased levels of the transcriptional regulator SNAIL1 are crucial for enhanced proliferation and reduced differentiation of HDAC1‐deficient teratoma. Importantly, the analysis of human teratomas revealed a similar link between loss of HDAC1 and enhanced tumour malignancy. These findings reveal a novel role for HDAC1 in the control of tumour proliferation and identify HDAC1 as potential marker for benign teratomas.
Although histone deacetylases are generally known as pro‐tumourigenic factors, loss of HDAC1 is here shown to promote proliferation and inhibit differentiation in a mouse teratoma model, at least partly via regulation of the transcription factor SNAIL1.
Journal Article