Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
2,245 result(s) for "Shao, Qiang"
Sort by:
Elective upper-neck versus whole-neck irradiation of the uninvolved neck in patients with nasopharyngeal carcinoma: an open-label, non-inferiority, multicentre, randomised phase 3 trial
The aim of this trial was to address whether elective ipsilateral upper-neck irradiation (UNI) sparing the uninvolved lower neck provides similar regional relapse-free survival compared with standard whole-neck irradiation (WNI) in patients with nasopharyngeal carcinoma. This open-label, non-inferiority, randomised, controlled, phase 3 trial was done at three Chinese medical centres. Patients aged 18–65 years with untreated, non-keratinising, non-distant metastatic (M0) nasopharyngeal carcinoma; with N0–N1 disease (according to International Union Against Cancer–American Joint Committee on Cancer TNM classification, seventh edition); and a Karnofsky performance status score of 70 or higher were randomly assigned (1:1) to receive elective UNI or WNI of the uninvolved neck. Total radiation doses of 70 Gy (for the primary tumour volume and the enlarged retropharyngeal nodes), 66–70 Gy (for the involved cervical lymph nodes), 60–62 Gy (for the high-risk target volume), and 54–56 Gy (for the low-risk target volume) were administered in 30–33 fractions, five fractions per week. Patients with stage II–IVA disease were recommended to receive combined intravenous cisplatin-based chemotherapy (either induction chemotherapy followed by concurrent chemoradiotherapy or concurrent chemoradiotherapy alone). Randomisation was done centrally by the Clinical Trials Centre of Sun Yat-sen University Cancer Centre by means of a computer-generated random number code with a block size of four. Patients were stratified according to treatment centre and nodal status. Investigators and patients were not masked to treatment allocation. The primary endpoint was regional relapse-free survival in the intention-to-treat population. Non-inferiority was indicated if the upper limit of the 95% CI of the difference in 3-year regional relapse-free survival between the UNI and WNI groups was within 8%. Adverse events were analysed in the safety population (defined as all patients who commenced the randomly assigned treatment). This study is registered with ClinicalTrials.gov, NCT02642107, and is closed. Between Jan 22, 2016, and May 23, 2018, 446 patients from 469 screened were randomly assigned to receive UNI (n=224) or WNI (n=222). Median follow-up was 53 months (IQR 46–59). 3-year regional relapse-free survival was similar in the UNI and WNI groups (97·7% [95% CI 95·7–99·7] in the UNI group vs 96·3% [93·8–98·8] in the WNI group; difference −1·4% [95% CI −4·6 to 1·8]; pnon-inferiority<0·0001). Although acute radiation-related toxic effects were similar between the groups, the incidence of late toxicity was lower in the UNI group than in the WNI group, including any-grade hypothyroidism (66 [30%] of 222 patients vs 87 [39%] of 221), skin toxicity (32 [14%] vs 55 [25%]), dysphagia (38 [17%] vs 71 [32%]), and neck tissue damage (50 [23%] vs 88 [40%]). No patients died during treatment. After treatment, one patient in the WNI group died from a non-cancer-related cause (dermatomyositis). Elective UNI of the uninvolved neck provides similar regional control and results in less radiation toxicity compared with standard WNI in patients with N0–N1 nasopharyngeal carcinoma. Sun Yat-sen University Clinical Research 5010 Program, the Natural Science Foundation of Guangdong Province, and the Overseas Expertise Introduction Project for Discipline Innovation. For the Chinese translation of the abstract see Supplementary Materials section.
TGF-β1/SH2B3 axis regulates anoikis resistance and EMT of lung cancer cells by modulating JAK2/STAT3 and SHP2/Grb2 signaling pathways
The pathogenesis of lung cancer, the most common cancer, is complex and unclear, leading to limited treatment options and poor prognosis. To provide molecular insights into lung cancer development, we investigated the function and underlying mechanism of SH2B3 in the regulation of lung cancer. We indicated SH2B3 was diminished while TGF-β1 was elevated in lung cancer tissues and cells. Low SH2B3 level was correlated with poor prognosis of lung cancer patients. SH2B3 overexpression suppressed cancer cell anoikis resistance, proliferation, migration, invasion, and EMT, while TGF-β1 promoted those processes via reducing SH2B3. SH2B3 bound to JAK2 and SHP2 to repress JAK2/STAT3 and SHP2/Grb2/PI3K/AKT signaling pathways, respectively, resulting in reduced cancer cell anoikis resistance, proliferation, migration, invasion, and EMT. Overexpression of SH2B3 suppressed lung cancer growth and metastasis in vivo. In conclusion, SH2B3 restrained the development of anoikis resistance and EMT of lung cancer cells via suppressing JAK2/STAT3 and SHP2/Grb2/PI3K/AKT signaling cascades, leading to decreased cancer cell proliferation, migration, and invasion.
Parabacteroides distasonis ameliorates hepatic fibrosis potentially via modulating intestinal bile acid metabolism and hepatocyte pyroptosis in male mice
Parabacteroides distasonis ( P. distasonis ) plays an important role in human health, including diabetes, colorectal cancer and inflammatory bowel disease. Here, we show that P. distasonis is decreased in patients with hepatic fibrosis, and that administration of P. distasonis to male mice improves thioacetamide (TAA)- and methionine and choline-deficient (MCD) diet-induced hepatic fibrosis. Administration of P. distasonis also leads to increased bile salt hydrolase (BSH) activity, inhibition of intestinal farnesoid X receptor (FXR) signaling and decreased taurochenodeoxycholic acid (TCDCA) levels in liver. TCDCA produces toxicity in mouse primary hepatic cells (HSCs) and induces mitochondrial permeability transition (MPT) and Caspase-11 pyroptosis in mice. The decrease of TCDCA by P. distasonis improves activation of HSCs through decreasing MPT-Caspase-11 pyroptosis in hepatocytes. Celastrol, a compound reported to increase P. distasonis abundance in mice, promotes the growth of P. distasonis with concomitant enhancement of bile acid excretion and improvement of hepatic fibrosis in male mice. These data suggest that supplementation of P. distasonis may be a promising means to ameliorate hepatic fibrosis. Parabacteroides distasonis ( P. distasonis ), part of the gut microbiome, was reported to play a role in diabetes, colorectal cancer and inflammatory bowel disease. Here the authors report that P. distasonis ameliorates liver fibrosis in studies with male mice, potentially via altered bile acid metabolism and hepatocyte pyroptosis.
Structural basis for chemokine recognition and receptor activation of chemokine receptor CCR5
The chemokine receptor CCR5 plays a vital role in immune surveillance and inflammation. However, molecular details that govern its endogenous chemokine recognition and receptor activation remain elusive. Here we report three cryo-electron microscopy structures of G i1 protein-coupled CCR5 in a ligand-free state and in complex with the chemokine MIP-1α or RANTES, as well as the crystal structure of MIP-1α-bound CCR5. These structures reveal distinct binding modes of the two chemokines and a specific accommodate pattern of the chemokine for the distal N terminus of CCR5. Together with functional data, the structures demonstrate that chemokine-induced rearrangement of toggle switch and plasticity of the receptor extracellular region are critical for receptor activation, while a conserved tryptophan residue in helix II acts as a trigger of receptor constitutive activation. The chemokine receptor CCR5 plays multiple roles in the immune system. Here, structures of G i1 protein-coupled CCR5 with or without a chemokine bound and of the CCR5- chemokine MIP-1 α complex offer insight into the distinct binding modes of the ligands and into the mechanism of CCR5 activation.
Identification of pyrogallol as a warhead in design of covalent inhibitors for the SARS-CoV-2 3CL protease
The ongoing pandemic of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) urgently needs an effective cure. 3CL protease (3CL pro ) is a highly conserved cysteine proteinase that is indispensable for coronavirus replication, providing an attractive target for developing broad-spectrum antiviral drugs. Here we describe the discovery of myricetin, a flavonoid found in many food sources, as a non-peptidomimetic and covalent inhibitor of the SARS-CoV-2 3CL pro . Crystal structures of the protease bound with myricetin and its derivatives unexpectedly revealed that the pyrogallol group worked as an electrophile to covalently modify the catalytic cysteine. Kinetic and selectivity characterization together with theoretical calculations comprehensively illustrated the covalent binding mechanism of myricetin with the protease and demonstrated that the pyrogallol can serve as an electrophile warhead. Structure-based optimization of myricetin led to the discovery of derivatives with good antiviral activity and the potential of oral administration. These results provide detailed mechanistic insights into the covalent mode of action by pyrogallol-containing natural products and a template for design of non-peptidomimetic covalent inhibitors against 3CL pro s, highlighting the potential of pyrogallol as an alternative warhead in design of targeted covalent ligands. SARS-CoV-2 3CL protease (3CL pro ) is essential for coronavirus replication and of great interest as an antiviral drug target. Here, the authors show that the naturally occurring flavonoid myricetin is a non-peptidomimetic and covalent inhibitor of 3CL pro , and they solve crystal structures of 3CL pro with myricetin and derivatives, which reveal that the pyrogallol group covalently modifies the catalytic cysteine.
X-ray-activated long persistent phosphors featuring strong UVC afterglow emissions
Phosphors emitting visible and near-infrared persistent luminescence have been explored extensively owing to their unusual properties and commercial interest in their applications such as glow-in-the-dark paints, optical information storage, and in vivo bioimaging. However, no persistent phosphor that features emissions in the ultraviolet C range (200–280 nm) has been known to exist so far. Here, we demonstrate a strategy for creating a new generation of persistent phosphor that exhibits strong ultraviolet C emission with an initial power density over 10 milliwatts per square meter and an afterglow of more than 2 h. Experimental characterizations coupled with first-principles calculations have revealed that structural defects associated with oxygen introduction-induced anion vacancies in fluoride elpasolite can function as electron traps, which capture and store a large number of electrons triggered by X-ray irradiation. Notably, we show that the ultraviolet C afterglow intensity of the yielded phosphor is sufficiently strong for sterilization. Our discovery of this ultraviolet C afterglow opens up new avenues for research on persistent phosphors, and it offers new perspectives on their applications in terms of sterilization, disinfection, drug release, cancer treatment, anti-counterfeiting, and beyond.
Gemcitabine and Cisplatin Induction Chemotherapy in Nasopharyngeal Carcinoma
Adding three cycles of induction chemotherapy with gemcitabine and cisplatin to concurrent chemoradiotherapy improved 3-year recurrence-free survival (85.3%, vs. 76.5% with concurrent chemoradiotherapy alone) and overall survival (94.6% vs. 90.3%). Patients receiving induction chemotherapy were more likely to have grade 3 or 4 myelosuppression, nausea, and vomiting.
Induction-concurrent chemoradiotherapy with or without sintilimab in patients with locoregionally advanced nasopharyngeal carcinoma in China (CONTINUUM): a multicentre, open-label, parallel-group, randomised, controlled, phase 3 trial
Anti-PD-1 therapy and chemotherapy is a recommended first-line treatment for recurrent or metastatic nasopharyngeal carcinoma, but the role of PD-1 blockade remains unknown in patients with locoregionally advanced nasopharyngeal carcinoma. We assessed the addition of sintilimab, a PD-1 inhibitor, to standard chemoradiotherapy in this patient population. This multicentre, open-label, parallel-group, randomised, controlled, phase 3 trial was conducted at nine hospitals in China. Adults aged 18–65 years with newly diagnosed high-risk non-metastatic stage III–IVa locoregionally advanced nasopharyngeal carcinoma (excluding T3–4N0 and T3N1) were eligible. Patients were randomly assigned (1:1) using blocks of four to receive gemcitabine and cisplatin induction chemotherapy followed by concurrent cisplatin radiotherapy (standard therapy group) or standard therapy with 200 mg sintilimab intravenously once every 3 weeks for 12 cycles (comprising three induction, three concurrent, and six adjuvant cycles to radiotherapy; sintilimab group). The primary endpoint was event-free survival from randomisation to disease recurrence (locoregional or distant) or death from any cause in the intention-to-treat population. Secondary endpoints included adverse events. This trial is registered with ClinicalTrials.gov (NCT03700476) and is now completed; follow-up is ongoing. Between Dec 21, 2018, and March 31, 2020, 425 patients were enrolled and randomly assigned to the sintilimab (n=210) or standard therapy groups (n=215). At median follow-up of 41·9 months (IQR 38·0–44·8; 389 alive at primary data cutoff [Feb 28, 2023] and 366 [94%] had at least 36 months of follow-up), event-free survival was higher in the sintilimab group compared with the standard therapy group (36-month rates 86% [95% CI 81–90] vs 76% [70–81]; stratified hazard ratio 0·59 [0·38–0·92]; p=0·019). Grade 3–4 adverse events occurred in 155 (74%) in the sintilimab group versus 140 (65%) in the standard therapy group, with the most common being stomatitis (68 [33%] vs 64 [30%]), leukopenia (54 [26%] vs 48 [22%]), and neutropenia (50 [24%] vs 46 [21%]). Two (1%) patients died in the sintilimab group (both considered to be immune-related) and one (<1%) in the standard therapy group. Grade 3–4 immune-related adverse events occurred in 20 (10%) patients in the sintilimab group. Addition of sintilimab to chemoradiotherapy improved event-free survival, albeit with higher but manageable adverse events. Longer follow-up is necessary to determine whether this regimen can be considered as the standard of care for patients with high-risk locoregionally advanced nasopharyngeal carcinoma. National Natural Science Foundation of China, Key-Area Research and Development Program of Guangdong Province, Natural Science Foundation of Guangdong Province, Overseas Expertise Introduction Project for Discipline Innovation, Guangzhou Municipal Health Commission, and Cancer Innovative Research Program of Sun Yat-sen University Cancer Center. For the Chinese translation of the abstract see Supplementary Materials section.
m6A methyltransferase METTL3-induced lncRNA SNHG17 promotes lung adenocarcinoma gefitinib resistance by epigenetically repressing LATS2 expression
Gefitinib has been widely applied for the treatment of lung adenocarcinoma (LUAD). However, the long-term application of gefitinib usually leads to acquired drug resistance in tumour patients, resulting in clinical treatment failure. Small nucleolar host gene 17 (SNHG17) has been shown to play a regulatory role in LUAD progression. Nevertheless, the role of SNHG17 in LUAD gefitinib resistance remains elusive. The expression pattern of SNHG17 was examined in tissues and cell lines of gefitinib-sensitive and gefitinib-resistant LUAD, respectively. Gain- and loss-of-function experiments were employed to assess the biological functions of SNHG17 in cell proliferation and apoptosis, as well as aggressive phenotypes of LUAD cells. MeRIP-qPCR and colorimetric quantificational analysis were performed to detect m6A modifications and contents. Fluorescence in situ hybridisation (FISH) and subcellular fractionation analysis were used to reveal the distribution of SNHG17. RIP and ChIP assays were performed to further validate the SNHG17/EZH2/LATS2 regulatory axis. A xenograft tumour growth assay was conducted to evaluate the role of SNHG17 in LUAD gefitinib resistance in vivo. SNHG17 was upregulated in gefitinib-resistant LUAD tissues and cell lines. Functional assays showed that SNHG17 aggravated the malignant phenotypes of gefitinib-resistant LUAD cells. In addition, METTL3-mediated N 6 -methyladenosine modification could induce the upregulation of SNHG17by stabilising its RNA transcript. Mechanistically, SNHG17 epigenetically repressed the expression of LATS2 by recruiting EZH2 to the promoter region of LATS2. The regulatory role of the SNHG17/EZH2/LATS2 axis in LUAD gefitinib resistance was further supported in vivo. Collectively, our findings suggested that SNHG17 induced by METTL3 could promote LUAD gefitinib resistance by epigenetically repressing LATS2 expression.
The prognostic value of serum amyloid A in solid tumors: a meta-analysis
Background Previous studies have demonstrated that serum amyloid A (SAA) levels are correlated with the clinical outcomes of solid tumors. However, the available data have not been systematically evaluated. The objective of the present meta-analysis was to explore the prognostic value of SAA levels in solid tumors. Methods Eligible studies were identified from the PubMed, EMBASE and Science Citation Index electronic databases. The clinical characteristics, disease/progression-free survival (DFS/PFS) and overall survival (OS) were extracted from the eligible studies. The pooled hazard ratios (HRs) and 95% confidence intervals (CIs) were calculated with Stata 12.0 software. We also performed subgroup, meta-regression and sensitivity analyses. Results In total, 12 eligible studies including 2749 patients were enrolled in the present meta-analysis. The pooled HRs with 95% CIs showed that elevated levels of SAA were significantly associated with poor OS (HR = 3.01, 95% CI 1.96–4.63) and DFS/PFS (HR = 1.67, 95% CI 1.31–2.12) in patients with solid tumors. Although publication bias was seem found in the studies with regard to OS, a further trim and fill analysis revealed that the adjusted HR was 3.02 (95% CI 1.96–4.63), which was close to the original HR. Subgroup analysis confirmed an elevated level of SAA as a strong prognostic marker in patients with solid tumors, regardless of tumor type, detection method, cut-off value, sample size, area and variance analyses. Conclusion Our meta-analysis indicated that elevated levels of SAA might be an unfavorable prognostic marker for OS in patients with solid tumors.