Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
41 result(s) for "Shelling, Andrew N."
Sort by:
The Role of Lifestyle and Dietary Factors in the Development of Premature Ovarian Insufficiency
Premature ovarian insufficiency (POI) is a condition that arises from dysfunction or early depletion of the ovarian follicle pool accompanied by an earlier-than-normal loss of fertility in young women. Oxidative stress has been suggested as an important factor in the decline of fertility in women and POI. In this review, we discuss the mechanisms of oxidative stress implicated in ovarian ageing and dysfunction in relation to POI, in particular mitochondrial dysfunction, apoptosis and inflammation. Genetic defects, autoimmunity and chemotherapy, are some of the reviewed hallmarks of POI that can lead to increased oxidative stress. Additionally, we highlight lifestyle factors, including diet, low energy availability and BMI, that can increase the risk of POI. The final section of this review discusses dietary factors associated with POI, including consumption of oily fish, mitochondria nutrient therapy, melatonin, dairy and vitamins that can be targeted as potential interventions, especially for at-risk women and in combination with personalised nutrition. Understanding the impact of lifestyle and its implications for POI and oxidative stress holds great promise in reducing the burden of this condition.
The Transcriptional Targets of Mutant FOXL2 in Granulosa Cell Tumours
Despite their distinct biology, granulosa cell tumours (GCTs) are treated the same as other ovarian tumours. Intriguingly, a recurring somatic mutation in the transcription factor Forkhead Box L2 (FOXL2) 402C>G has been found in nearly all GCTs examined. This investigation aims to identify the pathogenicity of mutant FOXL2 by studying its altered transcriptional targets. The expression of mutant FOXL2 was reduced in the GCT cell line KGN, and wildtype and mutant FOXL2 were overexpressed in the GCT cell line COV434. Total RNA was hybridised to Affymetrix U133 Plus 2 microarrays. Comparisons were made between the transcriptomes of control cells and cells altered by FOXL2 knockdown and overexpression, to detect potential transcriptional targets of mutant FOXL2. The overexpression of wildtype and mutant FOXL2 in COV434, and the silencing of mutant FOXL2 expression in KGN, has shown that mutant FOXL2 is able to differentially regulate the expression of many genes, including two well known FOXL2 targets, StAR and CYP19A. We have shown that many of the genes regulated by mutant FOXL2 are clustered into functional annotations of cell death, proliferation, and tumourigenesis. Furthermore, TGF-β signalling was found to be enriched when using the gene annotation tools GATHER and GeneSetDB. This enrichment was still significant after performing a robust permutation analysis. Given that many of the transcriptional targets of mutant FOXL2 are known TGF-β signalling genes, we suggest that deregulation of this key antiproliferative pathway is one way mutant FOXL2 contributes to the pathogenesis of adult-type GCTs. We believe this pathway should be a target for future therapeutic interventions, if outcomes for women with GCTs are to improve.
Nanotechnology-Enabled COVID-19 mRNA Vaccines
COVID-19 mRNA vaccines contain synthetic mRNA sequences encoded for the Spike proteins expressed on the surface of SARS-CoV-2, and utilize the host cells to produce specific antigens that stimulate both humoral and cellular immunities. Lipid nanoparticles are essential to facilitate the intracellular delivery of the mRNA to its action site, the ribosome, to fully exert its effect.
MicroRNA profiling of ovarian granulosa cell tumours reveals novel diagnostic and prognostic markers
Background The aim of this study was to explore the clinical utility of microRNAs (miRNAs) as improved markers of ovarian granulosa cell tumours (GCTs) for cancer diagnosis and prognosis prediction. Current histopathological and genetic markers, such as the presence of a FOXL2 gene mutation to distinguish between the two major subtypes are not wholly accurate and as such novel biomarkers are warranted. Methods The miRNA expression profiles of five formalin-fixed, paraffin-embedded (FFPE) adult-GCTs and five juvenile-GCTs were assessed using Affymetrix miRNA 3.0 Arrays and compared for differential expression. Ten miRNAs were assessed in an additional 33 FFPE tumours and four normal granulosa cell samples by quantitative RT-PCR, and their expression correlated to clinical information. Results MicroRNA array found 37 miRNAs as differentially expressed between the two GCT subtypes ( p  < 0.05, fold change ≥2 and among these, miRs -138-5p, -184, -204-5p, -29c-3p, -328-3p and -501-3p were validated by RT-qPCR as differentially expressed between the two GCT subtypes ( p  < 0.05). In addition, the expression of miR-184 was predictive of tumour recurrence in adult-GCTs, specifically for patients diagnosed with stage I and II and stage I only disease ( p  < 0.001 and p  < 0.05, respectively). Conclusions This study is the first to report on global miRNA expression profiles of human ovarian GCTs using FFPE tumour samples. We have validated six miRNAs as novel markers for subtype classification in GCTs with low levels of miR-138-5p correlating with early tumour stage. Low miR-184 abundance was correlated with tumour recurrence in early stage adult-GCT patients as a candidate predictive biomarker. Further studies are now needed to confirm the clinical utility of these miRNAs as diagnostic and recurrence markers, and understand their possible roles in the pathogenesis of GCTs.
The genetics of premature ovarian failure: current perspectives
Premature ovarian failure (POF) is a common cause of infertility in women, characterized by amenorrhea, hypoestrogenism, and elevated gonadotropin levels in women under the age of 40. Many genes have been identified over the past few years that contribute to the development of POF. However, few genes have been identified that can explain a substantial proportion of cases of POF. The unbiased approaches of genome-wide association studies and next-generation sequencing technologies have identified several novel genes implicated in POF. As only a small proportion of genes influencing idiopathic POF have been identified thus far, it remains to be determined how many genes and molecular pathways may influence idiopathic POF development. However, owing to POF's diverse etiology and genetic heterogeneity, we expect to see the contribution of several new and novel molecular pathways that will greatly enhance our understanding of the regulation of ovarian function. Future genetic studies in large cohorts of well-defined, unrelated, idiopathic POF patients will provide a great opportunity to identify the missing heritability of idiopathic POF. The identification of several causative genes may allow for early detection and would provide better opportunity for early intervention, and furthermore, the identification of specific gene defects will help direct potential targets for future treatment.
Human Sensory LTP Predicts Memory Performance and Is Modulated by the BDNF Val66Met Polymorphism
Background: Long-Term Potentiation (LTP) is recognised as a core neuronal process underlying long-term memory. However, a direct relationship between LTP and human memory performance is yet to be demonstrated. The first aim of the current study was thus to assess the relationship between LTP and human long-term memory performance. With this also comes an opportunity to explore factors thought to mediate the relationship between LTP and long-term memory. The second aim of the current study was to explore the relationship between LTP and memory in groups differing with respect to BDNF Val66Met; a single nucleotide polymorphism implicated in memory function. Methods: Participants were split into three genotype groups (Val/Val, Val/Met, Met/Met) and were presented with both an EEG paradigm for inducing LTP-like enhancements of the visually-evoked response, and a test of visual memory. Results: The magnitude of LTP 40 minutes after induction was predictive of long-term memory performance. Additionally, the BDNF Met allele was associated with both reduced LTP and reduced memory performance. Conclusions: The current study not only presents the first evidence for a relationship between sensory LTP and human memory performance, but also demonstrates how targeting this relationship can provide insight into factors implicated in variation in human memory performance. It is anticipated that this will be of utility to future clinical studies of disrupted memory function.
pH-Sensitive Nanoparticles Developed and Optimized Using Factorial Design for Oral Delivery of Gliclazide
Background Gliclazide is an oral hypoglycaemic agent used for the treatment of non-insulin dependent diabetes mellitus T2DM. Gliclazide has low solubility in the stomach and poor oral absorption and bioavailability. The pH-dependent solubility of gliclazide influences the intra- and inter-subject variability. Purpose The purpose of this study was to develop, optimize and evaluate pH-sensitive nanoparticles (NPs) based on Eudragit® S100 polymer for oral delivery of gliclazide (GLZ) in an attempt to improve its absorption and bioavailability and to reduce its intra- and inter-subject variability. Methods Nanoprecipitation technique was used for preparation of GLZ NPs. A 33 full factorial design was applied to study the effect of independent variables (polymer concentration, volume of the organic phase and stabilizer’s concentration) on the mean particle size, zeta potential and the incorporation efficiency of GLZ NPs. The developed optimal formulation was evaluated using various methods including X-ray diffraction (XRD), differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FT-IR) and scanning electron microscopy (SEM), drug dissolution and glucose stimulated insulin section test. Results The analysis of the results revealed transformation of GLZ from crystalline to unstructured form and the absence of any chemical interactions between GLZ and the polymer. The in vitro drug release was dependent on the dissolution behaviour of the polymer. The glucose-stimulated insulin section test showed that incorporation of GLZ into NPs has potentiated its effect on insulin secretion in β cells in presence of 10 mM glucose. Conclusion Our study suggests that the optimized NPs have a potential to improve the oral absorption of GLZ. Graphical abstract
Discordant association of the CREBRF rs373863828 A allele with increased BMI and protection from type 2 diabetes in Māori and Pacific (Polynesian) people living in Aotearoa/New Zealand
Aims/hypothesisThe A (minor) allele of CREBRF rs373863828 has been associated with increased BMI and reduced risk of type 2 diabetes in the Samoan populations of Samoa and American Samoa. Our aim was to test rs373863828 for associations with BMI and the odds of type 2 diabetes, gout and chronic kidney disease (CKD) in Māori and Pacific (Polynesian) people living in Aotearoa/New Zealand.MethodsLinear and logistic regression models were used to analyse the association of the A allele of CREBRF rs373863828 with BMI, log-transformed BMI, waist circumference, type 2 diabetes, gout and CKD in 2286 adults. The primary analyses were adjusted for age, sex, the first four genome-wide principal components and (where appropriate) BMI, waist circumference and type 2 diabetes. The primary analysis was conducted in ancestrally defined groups and association effects were combined using meta-analysis.ResultsFor the A allele of rs373863828, the effect size was 0.038 (95% CI 0.022, 0.055, p = 4.8 × 10−6) for log-transformed BMI, with OR 0.59 (95% CI 0.47, 0.73, p = 1.9 × 10−6) for type 2 diabetes. There was no evidence for an association of genotype with variance in BMI (p = 0.13), and nor was there evidence for associations with serum urate (β = 0.012 mmol/l, pcorrected = 0.10), gout (OR 1.00, p = 0.98) or CKD (OR 0.91, p = 0.59).Conclusions/interpretationOur results in New Zealand Polynesian adults replicate, with very similar effect sizes, the association of the A allele of rs373863828 with higher BMI but lower odds of type 2 diabetes among Samoan adults living in Samoa and American Samoa.
Comparison of growth factor signalling pathway utilisation in cultured normal melanocytes and melanoma cell lines
Background The phosphatidylinositol-3-kinase (PI3K-PKB), mitogen activated protein kinase (MEK-ERK) and the mammalian target of rapamycin (mTOR- p70S6K), are thought to regulate many aspects of tumour cell proliferation and survival. We have examined the utilisation of these three signalling pathways in a number of cell lines derived from patients with metastatic malignant melanoma of known PIK3CA, PTEN, NRAS and BRAF mutational status. Methods Western blotting was used to compare the phosphorylation status of components of the PI3K-PKB, MEK-ERK and mTOR-p70S6K signalling pathways, as indices of pathway utilisation. Results Normal melanocytes could not be distinguished from melanoma cells on the basis of pathway utilisation when grown in the presence of serum, but could be distinguished upon serum starvation, where signalling protein phosphorylation was generally abrogated. Surprisingly, the differential utilisation of individual pathways was not consistently associated with the presence of an oncogenic or tumour suppressor mutation of genes in these pathways. Conclusion Utilisation of the PI3K-PKB, MEK-ERK and mTOR-p70S6K signalling pathways in melanoma, as determined by phosphorylation of signalling components, varies widely across a series of cell lines, and does not directly reflect mutation of genes coding these components. The main difference between cultured normal melanocytes and melanoma cells is not the pathway utilisation itself, but rather in the serum dependence of pathway utilisation.
Germline copy number variants and endometrial cancer risk
Known risk loci for endometrial cancer explain approximately one third of familial endometrial cancer. However, the association of germline copy number variants (CNVs) with endometrial cancer risk remains relatively unknown. We conducted a genome-wide analysis of rare CNVs overlapping gene regions in 4115 endometrial cancer cases and 17,818 controls to identify functionally relevant variants associated with disease. We identified a 1.22-fold greater number of CNVs in DNA samples from cases compared to DNA samples from controls (p = 4.4 × 10–63). Under three models of putative CNV impact (deletion, duplication, and loss of function), genome-wide association studies identified 141 candidate gene loci associated (p < 0.01) with endometrial cancer risk. Pathway analysis of the candidate loci revealed an enrichment of genes involved in the 16p11.2 proximal deletion syndrome, driven by a large recurrent deletion (chr16:29,595,483-30,159,693) identified in 0.15% of endometrial cancer cases and 0.02% of control participants. Together, these data provide evidence that rare copy number variants have a role in endometrial cancer susceptibility and that the proximal 16p11.2 BP4-BP5 region contains 25 candidate risk gene(s) that warrant further analysis to better understand their role in human disease.