Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
12 result(s) for "Shemesh, Ariel"
Sort by:
Enteropathogenic Escherichia coli induces Entamoeba histolytica superdiffusion movement on fibronectin by reducing traction forces
Amebiasis, caused by Entamoeba histolytica , is a global health concern, affecting millions and causing significant mortality, particularly in areas with poor sanitation. Although recent studies have examined E. histolytica ’s interaction with human intestinal microbes, the impact of bacterial presence on the parasite’s motility, mechanical forces, and their potential role in altering invasiveness have not been fully elucidated. In this study, we utilized a micropillar-array system combined with live imaging to investigate the effects of enteropathogenic Escherichia coli on E. histolytica ’s motility characteristics, F-actin spatial localization, and traction force exerted on fibronectin-coated substrates. Our findings indicate that co-incubation with live enteropathogenic E. coli significantly enhances the motility of E. histolytica , as evidenced by superdiffusive movement—characterized by increased directionality and speed—resulting in broader dispersal and more extensive tissue/cell damage. This increased motility is accompanied by a reduction in F-actin-dependent traction forces and podosome-like structures on fibronectin-coated substrates, but with increased F-actin localization in the upper part of the cytoplasm. These findings highlight the role of physical interactions and cellular behaviors in modulating the parasite’s virulence, providing new insights into the mechanistic basis of its pathogenicity.
Localized translation and sarcomere maintenance requires ribosomal protein SA in mice
Cardiomyocyte sarcomeres contain localized ribosomes, but the factors responsible for their localization and the significance of localized translation are unknown. Using proximity labeling, we identified Ribosomal Protein SA (RPSA) as a Z-line protein. In cultured cardiomyocytes, the loss of RPSA led to impaired local protein translation and reduced sarcomere integrity. By employing CAS9 expressing mice along with adeno-associated viruses expressing CRE recombinase and single-guide RNAs targeting Rpsa, we knocked out Rpsa in vivo and observed mis-localization of ribosomes and diminished local translation. These genetic mosaic mice with Rpsa knockout in a subset of cardiomyocytes developed dilated cardiomyopathy, featuring atrophy of RPSA-deficient cardiomyocytes, compensatory hypertrophy of unaffected cardiomyocytes, left ventricular dilation, and impaired contractile function. We demonstrate that RPSA C-terminal domain is sufficient for localization to the Z-lines and that if the microtubule network is disrupted RPSA loses its sarcomeric localization. These findings highlight RPSA as a ribosomal factor essential for ribosome localization to the Z-line, facilitating local translation and sarcomere maintenance.
Neutrophil degranulation and severely impaired extracellular trap formation at the basis of susceptibility to infections of hemodialysis patients
Background Chronic kidney disease patients are at increased risk of mortality with cardiovascular diseases and infections as the two leading causes of death for end-stage kidney disease treated with hemodialysis (HD). Mortality from bacterial infections in HD patients is estimated to be 100–1000 times higher than in the healthy population. Methods We comprehensively characterized highly pure circulating neutrophils from HD and healthy donors. Results Protein levels and transcriptome of HD patients’ neutrophils indicated massive neutrophil degranulation with a dramatic reduction in reactive oxygen species (ROS) production during an oxidative burst and defective oxidative cellular signaling. Moreover, HD neutrophils exhibit severely impaired ability to generate extracellular NET formation (NETosis) in NADPH oxidase-dependent or independent pathways, reflecting their loss of capacity to kill extracellular bacteria. Ectopic hydrogen peroxidase (H 2 O 2 ) or recombinant human SOD-1 (rSOD-1) partly restores and improves the extent of HD dysfunctional neutrophil NET formation. Conclusions Our report is one of the first singular examples of severe and chronic impairment of NET formation leading to substantial clinical susceptibility to bacteremia that most likely results from the metabolic and environmental milieu typical to HD patients and not by common human genetic deficiencies. In this manner, aberrant gene expression and differential exocytosis of distinct granule populations could reflect the chronic defect in neutrophil functionality and their diminished ability to induce NETosis. Therefore, our findings suggest that targeting NETosis in HD patients may reduce infections, minimize their severity, and decrease the mortality rate from infections in this patient population.
Detection of Alkylating Agents using Electrical and Mechanical Means
Alkylating agents are reactive molecules having at least one polar bond between a carbon atom and a good leaving group. These often simple molecules are frequently used in organic synthesis, as sterilizing agents in agriculture and even as anticancer agents in medicine. Unfortunately, for over a century, some of the highly reactive alkylating agents are also being used as blister chemical warfare agents. Being relatively simple to make, the risk is that these will be applied by terrorists as poor people warfare agents. The detection and identification of such alkylating agents is not a simple task because of their high reactivity and simple structure of the reactive site. Here we report on new approaches to the detection and identification of such alkylating agents using electrical (organic field effect transistors) and mechanical (microcantilevers) means.
Coordination between cytoskeletal organization, cell contraction and extracellular matrix development, is depended on LOX for aneurysm prevention
Distinct, seemingly independent, cellular pathways affecting intracellular machineries or extracellular matrix (ECM) deposition and organization, have been implicated in aneurysm formation. One of the key genes associated with the pathology in both humans and mice is Lysyl oxidase (LOX), a secreted ECM-modifying enzyme, highly expressed in medial vascular smooth muscle cells. To dissect the mechanisms leading to aneurysm development, we conditionally deleted in smooth muscle cells. We find that cytoskeletal organization is lost following deletion. Cell culture assays and in vivo analyses demonstrate a cell-autonomous role for LOX affecting myosin light chain phosphorylation and cytoskeletal assembly resulting in irregular smooth muscle contraction. These results not only highlight new intracellular roles for LOX, but notably they link between multiple processes leading to aneurysm formation suggesting LOX coordinates ECM development, cytoskeletal organization and cell contraction required for media development and function.
Ribosomal Protein SA (RPSA) is required for localized translation and sarcomere maintenance in mice
Cardiomyocyte sarcomeres contain localized ribosomes, but the factors responsible for their localization and the significance of localized translation are unknown. Using proximity labeling, we identified Ribosomal Protein SA (RPSA) as a Z-line protein. In cultured cardiomyocytes, the loss of RPSA led to impaired local protein translation and reduced sarcomere integrity. By employing CAS9 expressing mice along with adeno-associated viruses expressing CRE recombinase and single-guide RNAs targeting Rpsa, we knocked out Rpsa in vivo and observed mis-localization of ribosomes and diminished local translation. These genetic mosaic mice with Rpsa knockout in a subset of cardiomyocytes developed dilated cardiomyopathy, featuring atrophy of RPSA-deficient cardiomyocytes, compensatory hypertrophy of unaffected cardiomyocytes, left ventricular dilation, and impaired contractile function. We demonstrate that RPSA C-terminal domain is sufficient for localization to the Z-lines and that if the microtubule network is disrupted RPSA loses its sarcomeric localization. These findings highlight RPSA as a ribosomal factor essential for ribosome localization to the Z-line, facilitating local translation and sarcomere maintenance.
Bio-informed synthesis of marine-sourced indole derivatives: suppressing gram-negative bacteria biofilm and virulence
Biofilms cling to surfaces to form complex architectures allowing their bacterial creators to acquire multidrug resistance and claiming countless lives worldwide. Therefore, finding novel compounds that affect virulence and biofilm-forming capacity of resistant pathogenic bacteria is imperative. Recently, we identified indole-based compounds that possess anti-biofilm properties in coral-associated bacteria. We succeeded in efficiently synthesizing two of these compounds, 1,1’-bisindole (NN) and 2,3-dihydro-2,2’-bisindole (DIV). They were found to attenuate biofilms of gram-negative bacterial pathogens, including Pseudomonas aeruginosa and Acinetobacter baumannii . Combining these compounds with the antibiotic tobramycin resulted in significant biofilm inhibition, particularly in the eradication of mature P. aeruginosa biofilms. Both of the bisindole derivatives, suppressed a number of bacterial virulence factors, reduced bacterial adhesion, and improved survival rates in infected Caenorhabditis elegans and human lung epithelial cell models. Transcriptome analyses of the bacteria treated with these compounds revealed that NN repressed or upregulated 307 genes when compared to untreated P. aeruginosa . These bacteria-derived molecules act in resistance-quenching and are potentially important candidates for inclusion in treatment protocols. The use of compounds that prevent the biofilm from accumulating the high cell densities critical to its structural and functional maintenance represents significant progress in the management of bacterial persistence. Therefore, a possible clinical implementation of these innovative compounds holds a promising future.
Effects of Nutrient Dynamics on Root Patch Choice
Plants have been recognized to be capable of allocating more roots to rich patches in the soil. We tested the hypothesis that in addition to their sensitivity to absolute differences in nutrient availability, plants are also responsive to temporal changes in nutrient availability. Different roots of the same Pisum sativum plants were subjected to variable homogeneous and heterogeneous temporally - dynamic and static nutrient regimes. When given a choice, plants not only developed greater root biomasses in richer patches; they discriminately allocated more resources to roots that developed in patches with increasing nutrient levels, even when their other roots developed in richer patches. These results suggest that plants are able to perceive and respond to dynamic environmental changes. This ability might enable plants to increase their performance by responding to both current and anticipated resource availabilities in their immediate proximity.
Natural Killer Receptor 1 Dampens the Development of Allergic Eosinophilic Airway Inflammation
The function of NCR1 was studied in a model of experimental asthma, classified as a type 1 hypersensitivity reaction, in mice. IgE levels were significantly increased in the serum of OVA immunized NCR1 deficient (NCR1gfp/gfp) mice in comparison to OVA immunized wild type (NCR1+/+) and adjuvant immunized mice. Histological analysis of OVA immunized NCR1gfp/gfp mice revealed no preservation of the lung structure and overwhelming peribronchial and perivascular granulocytes together with mononuclear cells infiltration. OVA immunized NCR+/+ mice demonstrated preserved lung structure and peribronchial and perivascular immune cell infiltration to a lower extent than that in NCR1gfp/gfp mice. Adjuvant immunized mice demonstrated lung structure preservation and no immune cell infiltration. OVA immunization caused an increase in PAS production independently of NCR1 presence. Bronchoalveolar lavage (BAL) revealed NCR1 dependent decreased percentages of eosinophils and increased percentages of lymphocytes and macrophages following OVA immunization. In the OVA immunized NCR1gfp/gfp mice the protein levels of eosinophils' (CCL24) and Th2 CD4+ T-cells' chemoattractants (CCL17, and CCL24) in the BAL are increased in comparison with OVA immunized NCR+/+ mice. In the presence of NCR1, OVA immunization caused an increase in NK cells numbers and decreased NCR1 ligand expression on CD11c+GR1+ cells and decreased NCR1 mRNA expression in the BAL. OVA immunization resulted in significantly increased IL-13, IL-4 and CCL17 mRNA expression in NCR1+/+ and NCR1gfp/gfp mice. IL-17 and TNFα expression increased only in OVA-immunized NCR1+/+mice. IL-6 mRNA increased only in OVA immunized NCR1gfp/gfp mice. Collectively, it is demonstrated that NCR1 dampens allergic eosinophilic airway inflammation.
On the generalizability of diffusion MRI signal representations across acquisition parameters, sequences and tissue types: Chronicles of the MEMENTO challenge
Diffusion MRI (dMRI) has become an invaluable tool to assess the microstructural organization of brain tissue. Depending on the specific acquisition settings, the dMRI signal encodes specific properties of the underlying diffusion process. In the last two decades, several signal representations have been proposed to fit the dMRI signal and decode such properties. Most methods, however, are tested and developed on a limited amount of data, and their applicability to other acquisition schemes remains unknown. With this work, we aimed to shed light on the generalizability of existing dMRI signal representations to different diffusion encoding parameters and brain tissue types. To this end, we organized a community challenge - named MEMENTO, making available the same datasets for fair comparisons across algorithms and techniques. We considered two state-of-the-art diffusion datasets, including single-diffusion-encoding (SDE) spin-echo data from a human brain with over 3820 unique diffusion weightings (the MASSIVE dataset), and double (oscillating) diffusion encoding data (DDE/DODE) of a mouse brain including over 2520 unique data points. A subset of the data sampled in 5 different voxels was openly distributed, and the challenge participants were asked to predict the remaining part of the data. After one year, eight participant teams submitted a total of 80 signal fits. For each submission, we evaluated the mean squared error, the variance of the prediction error and the Bayesian information criteria. The received submissions predicted either multi-shell SDE data (37%) or DODE data (22%), followed by cartesian SDE data (19%) and DDE (18%). Most submissions predicted the signals measured with SDE remarkably well, with the exception of low and very strong diffusion weightings. The prediction of DDE and DODE data seemed more challenging, likely because none of the submissions explicitly accounted for diffusion time and frequency. Next to the choice of the model, decisions on fit procedure and hyperparameters play a major role in the prediction performance, highlighting the importance of optimizing and reporting such choices. This work is a community effort to highlight strength and limitations of the field at representing dMRI acquired with trending encoding schemes, gaining insights into how different models generalize to different tissue types and fiber configurations over a large range of diffusion encodings.